
- •Введение в клеточную биологию
- •Понятие о цитологии
- •Основные положения современной клеточной теории
- •Понятие о цитологии.
- •Основные положения современной клеточной теории
- •История возникновения и развития цитологии
- •Общая морфология и химический состав клеток
- •Общая характеристика клетки
- •Особенности строения клеток различных организмов
- •Химический состав клеток
- •Особенности строения клеток различных организмов
- •Химический состав клеток
- •Белки. Из макромолекул являются наиболее распространенными и составляют до 55% сухого веса клетки.
- •Химический состав цитоплазмы. Неорганические вещества.
- •Химический состав цитоплазмы. Органические вещества.
- •Неорганические вещества.
- •Химический состав цитоплазмы. Органические вещества.
- •Центральная догма молекулярной биологии
- •Клеточное ядро
- •Строение и функции хроматина и хромосом
- •Ядрышко. Кариоплазма. Ядерный белковый матрикс
- •Плазматическая мембрана
- •Функции плазматической мембраны. Механизмы транспорта веществ через плазмолемму. Рецепторная функция плазмалеммы
- •Межклеточные контакты
- •Специализированные структуры плазматической мембраны
- •Центральная догма молекулярной биологии
- •Клеточное ядро
- •Строение и функции хроматина и хромосом
- •Ядрышко. Кариоплазма. Ядерный белковый матрикс
- •Строение и функции хроматина и хромосом
- •Ядрышко. Кариоплазма. Ядерный белковый матрикс
- •Вакуолярная система клетки
- •Эндоплазматическая сеть, структура и функции
- •Комплекс Гольджи, структурная организация и значение
- •Лизосомы, классификация, строение и значение
- •Функции лизосом
- •Вакуолярная система клеток растений
- •Митохондрии и пластиды
- •Митохондрии, строение, функциональное значение
- •Пластиды, строение, разновидности, функции
- •Проблема происхождения митохондрий и пластид. Относительная автономия
- •Проблема происхождения митохондрий и пластид. Относительная автономия
- •Центриоли, структура, репликация, участие в делении клетки
- •Строение ресничек и жгутиков эукариотических клеток
- •Фибриллярные структуры цитоплазмы
- •Центриоли, структура, репликация, участие в делении клетки
- •Строение ресничек и жгутиков эукариотических клеток
- •Фибриллярные структуры цитоплазмы
- •Воспроизводство клеток
- •2. Митоз. Стадии митоза, их продолжительность и характеристика. Амитоз
- •Мейоз, стадии и разновидности мейоза. Различия между митозом и мейозом
- •Дифференциация клеток
- •Факторы и регуляция дифференциации
- •Стволовая клетка и дифферон
- •Амитоз. Эндорепродукция
- •Мейоз, стадии и разновидности мейоза.
- •Биологический смысл мейоза. Различия между митозом и мейозом
- •1. Мейоз, стадии и разновидности мейоза.
- •2. Биологический смысл мейоза. Различия между митозом и мейозом
- •Дифференцировка и патология клеток
- •2. Апоптоз и некроз
- •3. Опухолевая трансформация клеток
- •Фракционирование клеток
- •Пероксисомы (микротельца)
- •Рецепторная роль плазмалеммы
Пероксисомы (микротельца)
Это небольшие вакуоли (0,3—1,5 мкм), одетые одинарной мсмбр| ной, отфаничивающей гранулярный матрикс, в центре которою рас полагается сердцевина, или нуклеоид (ничего не имеющий общего с нуклеоидом бактерий и вообще к ядерным структурам не относящийся)
В зоне сердцевины часто, особенно в пероксисомах печеночных клеток, видны кристаллоподобные структуры, состоящие из регулярно упакованных фибрилл, или трубочек. Изолированные сердцевины пероксисом содержат фермент уратоксидазу.
Пероксисомы обнаружены у простейших (амебы, тетрахимена), у низших грибов (дрожжи), у высших растений в некоторых эмбриональных
тканях (эндосперм) и в зеленых частях, способных к фотореспирации.
У высших позвоночных животных они найдены главным образом в печени и почках.
пероксисомы часто локализуются вблизи мембран ЭПР. У зеленых растений пероксисомы часто находятся в тесном контакте с митохондриями и пластидами.
Впервые пероксисомы были выделены из печени и почек. Во фракциях пероксисом обнаруживаются ферменты, связанные с метаболизмом перекиси водорода. Это ферменты (оксидазы, уратоксидаза, оксидаза D-аминокислот) окислительного дезаминирования аминокислот при работе которых образуется перекись водорода (Н2О2) и каталаза, разрушающая ее. В пероксисомах печени каталаза составляет до |40% белков и локализована в матриксе. Так как Н2О2 является токсическим веществом для клеток, то каталаза пероксисом может играть защитную роль.
В пероксиомах происходит накопление специфических белков, которые синтезируются в цитозоле и имеют свои сигнальные участки. В мембране пероксисом есть рецепторныи белок, который узнает транспортируемые белки. Белки мембран пероксисом, как и липиды, приходят из цитозоля. Такое накопление содержимого и рост мембраны приводят к общему росту пероксисомы, которая затем с помощью неизвестного пока механизма делится на две, т.е. самореплицируется.
Рецепторная роль плазмалеммы
Мы уже встречались с этой особенностью плазматической мембраны при ознакомлении с ее транспортными функциями. Белки-переносчики и насосы являются кроме всего также рецепторами, узнающими и взаимодействующими с определенными ионами. Рецепторные белки связываются с лигандами и участвуют в отборе молекул, поступающих в клетки.
В качестве таких рецепторов на поверхности клетки могут выступать белки мембраны или элементы гликокаликса — гликопротеиды. Такие чувствительные к отдельным веществам участки могут быть разбросаны по поверхности клетки или собраны в небольшие зоны.
Разные клетки животных организмов могут обладать разными наборами рецепторов или же разной чувствительностью одного и того же рецептора.
Роль многих клеточных рецепторов заключается не только в связывании специфических веществ или способности реагировать на физические факторы, но и в передаче межклеточных сигналов с поверхности внутрь клетки. В настоящее время хорошо изучена система передачи сигнала клеткам с помощью некоторых гормонов, в состав которых входят пептидные цепочки. Эти гормоны связываются со специфическими рецепторами на поверхности плазматической мембраны клетки. Рецепторы после связи с гормоном активируют другой белок, лежащий уже в цитоплазматической части плазматической мембраны, — аденилатциклазу. Этот фермент синтезирует молекулу циклического АМФ из АТФ. Роль циклического АМФ (цАМФ) заключается в том, что он является вторичным мессенджером — активатором ферментов киназ, вызывающих модификации других белков-ферментов. Так, при действии на печеночную клетку гормона поджелудочной железы глю-кагона, вырабатываемого А-клетками островков Лангерганса, он связывается со специфическим рецептором, что стимулирует активацию аденилатциклазы. Синтезированный цАМФ активирует протеинкина-зу А, которая в свою очередь активирует каскад ферментов, в конечном счете расщепляющих гликоген (запасной полисахарид животных) до глюкозы. Действие инсулина заключается в обратном: он стимулирует вхождение глюкозы в печеночные клетки и отложение ее в виде гликогена.
В целом цепь событий развертывается следующим образом: гормон взаимодействует специфически с рецепторной частью этой системы и, не проникая внутрь клетки, активирует аденилатциклазу, которая синтезирует цАМФ. Последний активирует или ингибирует внутриклеточный фермент или группу ферментов. Таким образом, команда (сигнал от плазматической мембраны) передается внутрь клетки. Эффективность этой аденилатциклазной системы очень высока. Так, взаимодействие одной или нескольких молекул гормона может привести за счет синтеза множества молекул цАМФ к усилению сигнала в тысячи раз. В данном случае аденилатциклазная система служит преобразователем внешних сигналов.
Существует и другой путь, при котором используются другие вторичные мессенджеры, — это так называемый фосфатидилинозитольный путь. Под действием соответствующего сигнала (некоторые нервные медиаторы и белки) активируется фермент фосфолипаза С, которая расщепляет фосфолипид фосфатидилинозитолдифосфат, который входит в состав плазматической мембраны. Продукты гидролиза этого липида, с одной стороны, активируют протеинкиназу С, которая вызывает активацию каскада киназ, что приводит к определенным клеточным реакциям, а с другой — приводит к освобождению ионов кальция, который регулирует целый ряд клеточных процессов.
Другой пример рецепторной активности — рецепторы ацетилхолина, важного нейромедиатора. Ацетилхолин, освобождаясь из нервного окончания, связывается с рецептором на мышечном волокне, что вызывает импульсное поступление Na+ в клетку (деполяризация мембраны), открывая сразу около 2000 ионных каналов в зоне нервно-мышечного окончания.
Разнообразие и специфичность наборов рецепторов на поверхности клеток приводят к созданию очень сложной системы маркеров, позволяющих отличать свои клетки (той же особи или того же вида) от чужих. Сходные клетки вступают друг с другом во взаимодействия, приводящие к слипанию поверхностей (конъюгация у простейших и бактерий, образование тканевых клеточных комплексов). При этом клетки, отличающиеся набором детерминантных маркеров или не воспринимающие их, либо исключаются из такого взаимодействия, либо (у высших животных) уничтожаются в результате иммунологических реакций.
С плазматической мембраной связана локализация специфических рецепторов, реагирующих на физические факторы. Так, в плазматической мембране или в ее производных у фотосинтетических бактерий и синезеленых водорослей локализованы белки-рецепторы (хлорофиллы), взаимодействующие с квантами света. В плазматической мембране светочувствительных клеток животных расположена специальная система фоторецепторных белков (родопсин), с помощью которых световой сигнал превращается в химический, что в свою очередь приводит к генерации электрического импульса.