
- •Группировка статистических данных. Виды группировок.
- •Абсолютные и относительные величины. Виды относительных величин.
- •Средние величины, их виды, принципы применения.
- •С редняя арифметическая и средняя гармоническая, расчет, применение.
- •В иды степенных средних.
- •Структурные средние.
- •Вариационный ряд, его виды, структурные характеристики.
- •11. Виды дисперсий.
- •12. Индексный метод
- •14. Расчет сводных индексов на основе индивидуальных
- •1) Индекс переменного состава:
- •2) Индекс постоянного состава:
- •3)Третий метод – для аддитивной модели:
- •17. Малая выборка
- •18. Корреля-регрессин.Анализа. Мнк.
- •19. Коэф-нт корреляции.
- •20. Парная линейная регрессия.
- •21. Коэффициент детерминации..
- •22. Множественная регрессия
- •23. Анализ качества регрессионной модели
- •24. Понятие и класс-я рядов динамики.
- •25. Показатели изменения уровней ряда
- •27. Компоненты ряда динамики
11. Виды дисперсий.
Дисперсия - средний квадрат отклонений индивидуальных значений признака от их средней величины
Различают три вида дисперсий:
общая;
средняя внутригрупповая;
межгрупповая.
Общая дисперсия (
) характеризует вариацию признака всей совокупности под влиянием всех тех факторов, которые обусловили данную вариацию. Эта величина определяется по формуле
где -
общая
средняя арифметическая всей исследуемой
совокупности.
Средняя внутригрупповая дисперсия (
) свидетельствует о случайной вариации, которая может возникнуть под влиянием каких-либо неучтенных факторов и которая не зависит от признака-фактора, положенного в основу группировки. Данная дисперсия рассчитывается следующим образом: сначала рассчитываются дисперсии по отдельным группам (
), затем рассчитывается средняя внутригрупповая дисперсия
:
где ni - число единиц в группе
Межгрупповая дисперсия
(дисперсия групповых средних) характеризует систематическую вариацию, т.е. различия в величине исследуемого признака, возникающие под влиянием признака-фактора, который положен в основу группировки. Эта дисперсия рассчитывается по формуле
где -
средняя
величина по отдельной группе.
Все три вида дисперсии связаны между собой: общая дисперсия равна сумме средней внутригрупповой дисперсии и межгрупповой дисперсии:
(6.11)
Данное соотношение отражает закон, который называют правилом сложения дисперсий. Согласно этому закону (правилу), общая дисперсия, которая возникает под влиянием всех факторов, равна сумме дисперсий, которые появляются как под влиянием признака-фактора, положенного в основу группировки, так и под влиянием других факторов. Благодаря правилу сложения дисперсий можно определить, какая часть общей дисперсии находится под влиянием признака-фактора, положенного в основу группировки.
Свойства дисперсии.
Уменьшение или увеличение весов (частот) варьирующего признака в определенное число раз дисперсии не изменяет.
Уменьшение или увеличение каждого значения признака на одну и ту же постоянную величину А дисперсии не изменяет.
Уменьшение или увеличение каждого значения признака в какое-то число раз к соответственно уменьшает или увеличивает дисперсию в
раз, а среднее квадратическое отклонение - в к раз.
Дисперсия признака относительно произвольной величины всегда больше дисперсии относительно средней арифметической на квадрат разности между средней и произвольной величиной:
. Если А равна нулю, то приходим к следующему равенству:
, т.е. дисперсия признака равна разности между средним квадратом значений признака и квадратом средней.
Каждое свойство при расчете дисперсии может быть применено самостоятельно или в сочетании с другими.
12. Индексный метод
В статистике под индексом понимается относительная величина (показатель), выражающая изменение сложного экономического явления во времени, в пространстве или по сравнению с планом. Индексы используются и для выявления структурных сдвигов в народном хозяйстве.
Индексы рассчитываются как для сложного явления (общие или сводные), так и для отдельных его элементов (индивидуальные индексы). В индексах, характеризующих изменение явления во времени различают базисный и отчетный (текущий) периоды. Базисный период - это период времени к которому относится величина, принятая за базу сравнения. Обозначается он подстрочным знаком "0". Отчетный период - это период времени, к которому относится величина, подвергающаяся сравнению. Обозначается он подстрочным знаком "1".
Индивидуальные индексы - это обычная
относительная величина. Например, если
цена товара в текущем периоде 30 руб., а
в базисном была 25 руб., то индивидуальный
индекс будет равен
или
120%.
Индивидуальные индексы служат для характеристики изменения отдельных элементов сложного явления. В зависимости от экономического назначения индивидуальные индексы бывают: физического объема продукции, себестоимости, цен, трудоемкости и т.д.
Индекс физического объема продукции:
показывает, во сколько раз возрос
(уменьшился) выпуск какого-либо одного
товара в отчетном периоде по сравнению
с базисным, или сколько процентов
составляет.
Индивидуальный индекс цен:
- характеризует изменение цены одного
определенного товара в текущем периоде
по сравнению с базисным.
Индивидуальный индекс себестоимости
единицы продукции:
показывает изменение себестоимости.
Сводный индекс - характеризует изменение всей сложной совокупности в целом, т.е. состоящей из несуммируемых элементов. Следовательно, чтобы рассчитать такой индекс надо преодолеть несуммарность элементов совокупности. Это достигается введением дополнительного показателя (соизмерителя). Сводный индекс состоит из двух элементов: индексируемой величины и веса.
Общие индексы строят для количественных (объемных) и качественных показателей. В зависимости от цели исследования и наличия исходных данных используют различные формы построения общих индексов: агрегатная или средневзвешенная.
13. Агрегатный индекс – сложный показатель, который характеризует среднее изменение социально-экономического явления, состоящего из несоизмеримых элементов. Особенность этой формы индекса состоит в том, что непосредственно сравниваются две суммы одноименных показателей.
Индексируемая величина – признак, изменение которого изучается (цена товаров, курс акций, затраты рабочего времени и т.д.). Вес индекса – это величина, служащая для целей соизмерения индексируемых величин.
При выборе веса индекса следует руководствоваться правилом: если строится индекс количественного показателя, то веса берутся за базисный период, при построении индекса качественного показателя используются веса отчетного периода.
Индекс стоимости продукции (товарооборота)
(
)
- представляет собой отношение стоимости
продукции текущего периода к стоимости
продукции в базисном периоде. Стоимость
продукции – это произведение количества
продукции в натуральном выражении (q)
на цену (p).
Показывает, во сколько раз возросла (уменьшилась) стоимость продукции отчетного периода по сравнению с базисным, или сколько процентов составляет.
Индекс физического объема продукции – это индекс количественного показателя. Индексируемой величиной будет количество продукции, а весом – цена.
показывает, во сколько раз возросла (уменьшилась) стоимость продукции из-за изменения объемов ее производства.
Разность числителя и знаменателя (
)
показывает, на сколько рублей изменилась
стоимость продукции в результате
изменения объема.
Индекс цен – это индекс качественного показателя. Индексируемой величиной будет цена товара, т.к. этот индекс характеризует изменение цен. Весом будет выступать количество произведенного товаров.
,
в числителе – фактическая стоимость продукции текущего периода, а в знаменателе – условная стоимость тех же товаров ценах базисного периода. Показывает, во сколько раз возросла (уменьшилась) стоимость продукции из-за изменения цен. Разность числителя и знаменателя – на сколько рублей изменилась стоимость продукции в результате роста (снижения) цен.
Стоимость продукции можно представить
как произведение количества товара на
его цену. Точно такая же связь существует
и между индексами стоимости, физического
объема и цен, т.е.
,
или
.
Разность числителя и знаменателя каждого
индекса-сомножителя выражает размер
изменения общей абсолютной величины
под влиянием изменения одного фактора.
Методика построения агрегатного индекса предусматривает решение трех вопросов:
1. Какая величина будет индексируемой
2. По какому составу разнородных элементов явления необходимо исчислить индекс
3. Что будет служить весом при расчете индекса.