Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_multimedynye_tekhnologii (2).docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
134.73 Кб
Скачать

9. Машинный анализ и распознавание объектов. Выделение признаков. Типы признаков. Инвариантность признаков.

Сравнение с эталоном. Проблема — большое количество эталонов, которые надо хранить, и медленная процедура поиска. Кроме того, невозможно учесть различие в положении, ориентации, размерах или расстояния до объекта, а также модификации формы объекта (человек стоит, сидит, бежит, и т.д.). Признаки. Основные методы в машинном зрении основаны на использовании признаков для обнаружения и опознания объектов. Для описания объектов используется набор признаков (x1, x2, …, xN). N — размерность пространства признаков. Признаком может служить, например: цвет, яркость, положение в пространстве, ориентация.  Кластер-анализ. Кластер-анализ — автоматическое распределение множества объектов (-образцов) на классы. Классы определяются как компактные множества («облака») в пространстве признаков: два объекта относятся к одному и тому же классу, если представляющие их точки в пространстве признаков находятся рядом (в одном облаке). Кластер-анализ применяется не только в ИИ и не только для машинного зрения. Это универсальные алгоритмы, широко используемые для статистической обработки данных. В том числе и в ситуациях, когда «правильная» классификация объектов неизвестна. Цель — классификация образов (отнести образ к определенному классу).  Основные подходы в кластер-анализе: 

  • Статические алгоритмы.

  • Обучение (с учителем или без учителя).

Типы алгоритмов: Разделяющие гиперплоскости: для каждого класса в пространстве признаков строится гиперплоскость, отделяющая точки этого класса от остальных точек. Своеобразной реализацией этого алгоритма является персептрон. Метод комитетов: для разделения двух классов в пространстве признако строится совокупность гиперплоскостей. Для данной точки принадлежность ее к тому или иному классу определяется «большинством голосов» гиперплоскостей, входящих в комитет. Вычисление оценок (расстояние от заданной точки до кластеров в пространстве признаков). Основная проблема кластер-анализа: трудно выделить информативные признаки. Не по любому набору признаков можно правильно классифицировать объекты. Модели. Строится модель (=схема) объекта, описывающая основные составные части и соотношения признаков — вне зависимости от размеров, ориентации и конфигурации объекта.  Пример: нет «треугольника вообще» (каждый треугольник либо прямоугольный, либо остроугольный, либо тупоугольный), «человека вообще» (мужчина/женщина, старик/ребенок и т.п.)  Стратегия распознавания: строится гипотеза («Это дом»), которая затем проверяется на соответствие модели («крыша, стена, дверь, окна»). 

Выделение признаков. Типы признаков. Инвариантность признаков.

Метрические признаки, принимающие определенные значе­ния на некотором числовом отрезке (площадь, средняя яркость и т. д.); логические признаки, принимающие значения 1 или 0 (истин­но или ложно данное утверждение об изображении); примерами таких утверждений служат: изображение имеет «дыры», контур изображения неодносвязен, форма изображения – прямоуголь­ник, площадь области изображения не больше 10; топологические признаки, как и логические, относятся к ка­чественному характеру изображения, но могут принимать не два, а несколько значений; примерами являются число компонент связности контура изображения, число дыр в связной области объекта; структурно-лингвистические признаки связаны с двумя близ­кими подходами к проблеме распознавания – структурным и лингвистическим. При структурном подходе изображение счи­тается состоящим из частей. Частями изображения являются непроизводные элементы, которые в совокупности с правилами их соединения образуют специальный язык (грамматику). Ана­лиз такой грамматики составляет суть лингвистического под­хода к распознаванию. Грубо говоря, структурно-лингвистические методы, которые называют также синтаксическими, направлены на синтаксическую формализацию классов изображений: каждому классу соответствует грамматика с определенными правилами, каждому входному изображению – фраза. Изображение счи­тается соответствующим данному классу, если отвечающая ему фраза удовлетворяет правилам грамматики для этого класса изображений. , где Е – область рассматриваемого изображения; S(Е) – ее пло­щадь; l(Е) – длина контура. Очевидно, признак (E) инвариан­тен к смещениям, к поворотам и к изменениям масштаба. Метрические признаки формы инвариантны к изменениям яр­кости. В случае отсутствия преобразований яркости или при из­вестном законе яркостных преобразований можно использовать в качестве признаков яркостные характеристики полутоновых изображений. Основными яркостными признаками являются:

  • средняя яркость в области изображения Вср;

  • максимальная и минимальная яркость Bmах, Bmin;

  • модальное значение яркости Bmod;

  • разброс (дисперсия) значений яркости