Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
otvety_multimedynye_tekhnologii (2).docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
134.73 Кб
Скачать

8. Методы сегментации изображений (зачем, как).

Сегментация:

    • Выявление областей (представляющих интерес в каком-то отношении) в изображениях

    • Сегмент – связная область, удовлетворяющая предикату однородности

    • Основа для последующего поиска

    • Одна из самых трудных задач обработки изображений 

    • Несколько возможных (эвристических) методов

Сегментацией изображения называется разбиение изображения на непохожие по некоторому признаку области. Предполагается, что области соответствуют реальным объектам, или их частям, а границы областей соответствуют границам объектов. Сегментация играет важную роль в задачах обработки изображений и компьютерного зрения Задачи автоматической сегментации делятся на два класса:  выделение областей изображения с известными свойствами разбиение изображения на однородные области Между этими двумя постановками задачи есть принципиальная разница. В первом случае задача сегментации состоит в поиске определенных областей, о которых имеется априорная информация (например, мы знаем цвет, форму областей, или интересующие нас области представляют собой изображения известного объекта). Методы этой группы узко специализированы для каждой конкретной задачи. Сегментация в такой постановке используется в основном в задачах машинного зрения (анализ сцен, поиск объектов на изображении).  Во втором случае никакая априорная информация о свойствах областей не используется, зато на само разбиение изображения накладываются некоторые условия (например, все области должны быть однородны по цвету и текстуре). Так как при такой постановке задачи сегментации не используется априорная информация об изображенных объектах, то методы этой группы универсальны и применимы к любым изображениям. В основном сегментация в этой постановке применяется на начальном этапе решения задачи, для того чтобы получить представление изображения в более удобном виде для дальнейшей работы. Для грубой оценки качества метода в конкретной задаче обычно фиксируют несколько свойств, которыми должна обладать хорошая сегментация. Качество работы метода оценивается в зависимости от того, насколько полученная сегментация обладает этими свойствами. Наиболее часто используются следующие свойства [1]: 

  • однородность регионов (однородность цвета или текстуры)

  • непохожесть соседних регионов

  • гладкость границы региона

  • маленькое количество мелких «дырок» внутри региона и т. д.

Кластеризация цветового пространства. В постановке задачи сегментации прослеживается аналогия с задачей кластеризации (или обучения без учителя). Для того чтобы свести задачу сегментации к задаче кластеризации, достаточно задать отображение точек изображения в некоторое пространство признаков и ввести метрику (меру близости) на этом пространстве признаков. В качестве признаков точки изображения можно использовать представление ее цвета в некотором цветовом пространстве, примером метрики (меры близости) может быть евклидово расстояние между векторами в пространстве признаков. Тогда результатом кластеризации будет квантование цвета для изображения. Задав отображение в пространство признаков, можно воспользоваться любыми методами кластерного анализа. Наиболее популярные методы кластеризации, используемые для сегментации изображений – к-средних [35] (обобщенный метод Ллойда), EM алгоритм[5]. Основная проблема методов кластеризации, состоит в том, что пространственное расположение точек либо не учитывается совсем, либо учитывается косвенно (например, используя координаты точки как один из признаков). Поэтому обычно после кластеризации точек изображения проводят процедуру выделения связных компонент. Методы кластеризации плохо работают на зашумленных изображениях: часто теряют отдельные точек регионов, образуется много мелких регионов, и. т. п. ^ Выращивание регионов, дробление-слияние. Методы этой группы учитывают пространственное расположение точек напрямую.  Методы выращивания регионов основаны на следующей идее. Сначала по некоторому правилу выбираются центры регионов (seeds), к которым поэтапно присоединяются соседние точки, удовлетворяющих некоторому критерию. Процесс выращивания регионов (region growing) останавливается, когда ни одна точка изображения не может быть присоединена ни к одному региону. Применяются разные критерии, на основании которых точка присоединяется или не присоединяется к региону: близость (в некотором смысле) точки к центру региона; близость к соседней точке, присоединенной к региону на предыдущем шаге; близость по некоторой статистике региона; стоимость кратчайшего пути от точки до центра региона, и т. п. В основном процедура выращивания региона используется для получения отдельных регионов, однако, применяя эту процедуру последовательно или одновременно для нескольких регионов, можно получить разбиение всего изображения. Существуют различные стратегии выбора зерен (seeds) и выращивания регионов [14, 15, 16, 17].  ^ Методы дробления-слияния состоят из двух основных этапов: дробления и слияния.[4, 6] Дробление начинается с некоторого разбиения изображения, не обязательно на однородные области. Процесс дробления областей происходит до тех пор, пока не будет получено разбиение изображения (пересегментация), удовлетворяющее свойству однородности сегментов. Затем происходит объединение схожих соседних сегментов до тех пор, пока не будет получено разбиение изображения на однородные области максимального размера. Конкретные методы различаются алгоритмами, используемыми на этапах дробления и слияния. Для получения пересегментации изображения используются алгоритмы k-средних [10], watershed [9, 12], fuzzy expert systems [13], на втором этапе используются алгоритмы k-средних [10], самоорганизующиеся карты Кохонена [11,6], fuzzy expert systems [16], и т. д. На этапе слияния регионов используются relaxation process[3], k-средних [10], SIDE-уравнения [14], самоорганизующиеся карты Кохонена [9],и т. д. ^ Моделирование изображения Марковским полем. Хорошей моделью изображения служит Марковское случайное поле [7, 8]. Данная модель основана на предположении, что цвет каждой точки изображения зависит от цветов некоторого множества соседних точек. Предложено также обобщение модели изображения также можно обобщить на текстурную сегментацию [7]. Данный подход является достаточно сложным в реализации, однако может являться наиболее адекватным в случае важности учёта текстуры при сегментации. Подробнее о Марковских полях можно прочитать в [7, 8]. ^ Методы, основанные на операторах выделения краев. При данном подходе задача сегментации формулируется как задача поиска границ регионов. Методы поиска границ хорошо разработаны для полутоновых изображений. Полутоновое изображение рассматривается как функция двух переменных (x и y), и предполагается, что границы регионов соответствуют максимумам градиента этой функции. Для их поиска применяется аппарат дифференциальной геометрии (в простейшем случае это фильтры Roberts, Kirsch, Prewitt, Sobel).  Для повышения устойчивости к шуму, перед применением фильтрации изображение обычно размывают. Благодаря коммутативности оператора Лапласа и Гауссова фильтра, можно одновременно осуществлять размытие и поиск границ. В методе Canny комбинируются результаты поиска границ при разной степени размытия.