Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
OTVET_NA_BILET_PO_KhIMII.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
2.13 Mб
Скачать

1. Основные положения теории химического строения а.М. Бутлерова

  1. Атомы в молекулах соединены друг с другом в определенной последовательности согласно их валентностям. Последовательность межатомных связей в молекуле называется ее химическим строением и отражается одной структурной формулой (формулой строения).

  2. Химическое строение можно устанавливать химическими методами. (В настоящее время используются также современные физические методы).

  3. Свойства веществ зависят от их химического строения.

  4. По свойствам данного вещества можно определить строение его молекулы, а по строению молекулы - предвидеть свойства.

  5. Атомы и группы атомов в молекуле оказывают взаимное влияние друг на друга.

Теория Бутлерова явилась научным фундаментом органической химии и способствовала быстрому ее развитию. Опираясь на положения теории, А.М. Бутлеров дал объяснение явлению изомерии, предсказал существование различных изомеров и впервые получил некоторые из них.

Развитию теории строения способствовали работы Кекуле, Кольбе, Купера, Жерара и Вант-Гоффа. Однако их теоретические положения не носили общего характера и служили, главным образом, целям объяснения экспериментального материала.

2. Электролиз как окислительно-восстановительный процесс. Электролиз как окислительно-восстановительный процесс

Сущность электролиза

Электролиз — это окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока через раствор или расплав электролитов.

Для осуществления электролиза к отрицательному полюсу внешнего источника постоянного тока присоединяют катод, а к положительному полюсу — анод, после чего погружают их в электролизер с раствором или расплавом электролита.

Электроды, как правило, бывают металлические, но применяются и неметаллические, например графитовые (проводящие ток).

На поверхности электрода, подключенного к отрицательному полюсу источника постоянного тока (катоде), ионы, молекулы или атомы присоединяют электроны, т. е. протекает реакция электрохимического восстановления. На положительном электроде (аноде) происходит отдача электронов, т. е. реакция окисления. Таким образом, сущность электролиза состоит в том, что на катоде происходит процесс восстановления, а на аноде — процесс окисления.

В результате электролиза на электродах (катоде и аноде) выделяются соответствующие продукты восстановления и окисления, которые в зависимости от условий могут вступать в реакции с растворителем, материалом электрода и т. п., — так называемые вторичные процессы.

Металлические аноды могут быть: а) нерастворимыми или инертными (Pt, Au, Ir, графит или уголь и др.), при электролизе они служат лишь передатчиками электронов; б) растворимыми (активными); при электролизе они окисляются.

В растворах и расплавах различных электролитов имеются разноименные по знаку ионы, т. е. катионы и анионы, которые находятся в хаотическом движении. Но если в такой расплав электролита, например расплав хлорида натрия NaCl, опустить электроды и пропускать постоянный электрический ток, то катионы Na+ будут двигаться к катоду, а анионы Cl — к аноду. На катоде электролизера происходит процесс восстановления катионов Na+ электронами внешнего источника тока:

Na+ + e = Na0

На аноде идет процесс окисления анионов хлора, причем отрыв избыточных электронов от Cl осуществляется за счет энергии внешнего источника тока:

Cl – e = Cl0

Выделяющиеся электронейтральные атомы хлора соединяются между собой, образуя молекулярный хлор: Cl + Cl = Cl2, который и выделяется на аноде. Суммарное уравнение электролиза расплава хлорида натрия:

2NaCl —> 2Na+ + 2Clэлектролиз—> 2Na0 + Cl20

Более сложные процессы электролиза протекают в водных растворах электролитов. В качестве примера рассмотрим электролиз водного раствора хлорида натрия. При прохождении тока через раствор протекающие на электродах процессы существенно отличаются от реакций, идущих в расплаве. На катоде вместо ионов Na+ будут восстанавливаться молекулы воды:

2H2O + 2e = H2 + 2OH

В данном случае два электрона, поступающие с катода, реагируют с двумя молекулами воды, образуя молекулу водорода и два иона гидроксила. На аноде протекает реакция окисления хлорид-ионов:

2Cl – 2e = Cl2

Следовательно, при электролизе водного раствора NaCl на катоде выделится водород, а на аноде хлор, в растворе (в катодной зоне) будет накапливаться NaOH. Общее уравнение электролиза водного раствора хлорида натрия в ионной и молекулярной форме можно выразить так:

2H2O + 2Cl = H2 + Cl2 + 2OH

или

2H2 + 2NaCl = H2 + Cl2 + 2NaOH

В случае если раствор очень разбавленный и концентрация NaCl мала, на аноде вместе с ионами Cl могут окисляться молекулы воды:

2H2O – 4e = O2 + 4H+

Процесс образования кислорода играет большую роль во многих анодных процессах при электролизе водных растворов.

Практическое применение электролиза для проведения процессов окисления и восстановления.

Электрохимические поцессы широко применяются в различных областях современной техники, в аналитической химии, биохимии и т. д. В химической промышленности электролизом получают хлор и фтор, щелочи, хлораты и перхлораты, надсерную кислоту и персульфаты, химически чистые водород и кислород и т. д. При этом одни вещества получают путем восстановления на катоде (альдегиды, парааминофенол и др.), другие электроокислением на аноде (хлораты, перхлораты, перманганат калия и др.).

В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки. Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др.

При катодном осаждении металлов на структуру и свойства образующегося слоя металла влияет ряд факторов: 1) состав и природа электролита; 2) плотность тока; 3) температура электролита; 4) природа металла, служащего электродом, и др.

Для рафинирования (очистки) металла электролизом из него отливают пластины и помещают их в качестве анодов в электролизер. При пропускании тока металл, подлежащий очистке, подвергается анодному растворению, т. е. переходит в раствор в виде катионов. Затем эти катионы металла разряжаются на катоде, благодаря чему образуется компактный осадок уже чистого металла. Примеси, находящиеся в аноде, либо остаются нерастворимыми (анодный шлам), либо переходят в электролит и удаляются.

Гальванотехника – область прикладной электрохимии, занимающаяся процессами нанесения металлических покрытий на поверхность как металлических, так и неметаллических изделий при прохождении постоянного электрического тока через растворы их солей. Гальванотехника пожразделяется на гальваностегию и гальванопластику.

Гальваностегия (от греч. покрывать) – это электроосаждение на поверхность металла другого металла, который прочно связывается (сцепляется) с покрываемым металлом (предметом), служащим катодом электролизера.

Перед покрытием изделия необходимо его поверхность тщательно очистить (обезжирить и протравить), в противном случае металл будет осаждаться неравномерно, а кроме того, сцепление (связь) металла покрытия с поверхностью изделия будет непрочной.

Гальванопластика – получение путем электролиза точных, легко отделяемых металлических копий относительно значительной толщины с различных как неметаллических, так и металлических предметов, называемых матрицами.

С помощью гальванопластики изгоовляют бюсты, статуи и т. д. Гальванопластика используется для нанесения сравнительно толстых металлических покрытий на другие металлы (например, образование "накладного" слоя никеля, серебра, золота и т. д.).

Другие применения электролиза.

Кроме указанных выше электролиз нашел применение и в других областях. Укажем некоторые из них: а) получение оксидных защитных пленок на металлах (анодирование); б) электрохимическая обработка поверхности металлического изделия (полировка); в) электрохимическое окрашивание металлов (например, меди, латуни, цинка, хрома и др.); г) очистка воды – удаление из нее растворимых примесей. В результате получается так называемая мягкая вода (по своим свойствам приближающаяся к дистиллированной); д) электрохимическая заточка режущих инструментов (например, хирургических ножей, бритв и т.д.).

Билет 8.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]