
- •1.1. Основные понятия
- •1.2. Виды технологических процессов.
- •1.3. Этапы разработки технологических процессов.
- •Анализ и расчет технологичности электронного узла.
- •Выбор техпроцесса сборки электронного узла.
- •Анализ объема выпуска изделия.
- •Разработка технологических операций.
- •1.4. Технологические процессы и качество эа.
- •Методы оценки точности.
- •Методы получения заданной точности.
- •1.8. Выбор наиболее экономичного варианта тп по себестоимости.
- •2.1. Общие сведения о микросхемах и технологии их изготовления.
- •2.2. Изготовление монокристалла полупроводникового материала
- •2.3. Резка монокристалла и получение пластин
- •2.4. Изготовление фотошаблонов
- •2.5. Полупроводниковые микросхемы
- •2.6. Легирование методом термической диффузии примесей
- •2.7. Легирование методом ионной имплантации
- •2.9. Фотолитография
- •Подготовка поверхности
- •Нанесение фотослоя
- •Совмещение и экспонирование
- •2.10. Расчет топологических размеров областей транзистора
- •2.11. Осаждение тонких пленок в вакууме
- •2.12. Тонкопленочные резисторы
- •2.13. Основы толстопленочной технологии
- •Толстопленочные пасты
- •2.14. Коммутационные платы микросборок
- •Тонкопленочные платы
- •Тонкопленочные платы на основе анодированного алюминия
- •Толстопленочные платы
- •2.16. Электрический монтаж кристаллов имс на коммутационных платах микросборок
- •Проволочный монтаж
- •Ленточный монтаж
- •Монтаж жесткими объемными выводами
- •Микросварка
- •Изготовление системы объемных выводов
- •3.1. Общие сведения о печатных платах
- •Конструктивные характеристики печатных плат
- •3.2. Материал печатных плат
- •3.3. Изготовление оригиналов и фотошаблонов
- •3.4. Технологические процессы изготовления печатных плат
- •3.5. Основные технологические этапы в производстве печатных плат Получение заготовок печатных плат
- •Получение монтажных и переходных отверстий в печатных платах
- •Подготовка поверхности
- •Металлизация печатной платы
- •Получение защитного рельефа
- •Травление меди с пробельных мест
- •Обработка по контуру
- •Прессование
- •Контроль
- •4.1. Обработка резанием деталей эа
- •Обработка деталей на токарно-револьверных станках
- •Обработка деталей на токарных автоматах
- •Обработка деталей фрезерованием
- •Обработка деталей на сверлильных станках
- •Обработка деталей шлифованием
- •4.2. Изготовление деталей эа методом литья
- •4.3. Изготовление деталей эа холодной штамповкой
- •4.4. Изготовление деталей из пластмасс для эа
- •4.5. Электрофизические и электрохимические методыобработки деталей
- •5.1. Сборочно-монтажные операции
- •5.2. Сборка и монтаж модулей первого уровня
- •Комплектация устанавливаемых на пп элементов
- •Подготовка элементов к монтажу
- •Установка элементов на печатную плату и их фиксация
- •Пайка элементов на печатной плате
- •5.3. Технология монтажа объемных узлов
- •Технология жгутового монтажа
- •Технология монтажа с использованием ленточных проводов
- •6.1. Технологические операции регулировки и настройки.
- •Критерии оценки качества рно.
- •6.2. Виды неисправностей эа и их устранение. Общие положения
- •Уровни и способы поиска неисправностей персональных эвм.
- •Средства локализации неисправностей, ремонт и отладка системных плат.
- •6.3. Испытания эа. Испытания как основная форма контроля эа
- •Испытания эа на механические воздействия.
- •Испытание эа на климатические воздействия.
- •2.17. Герметизация микросхем и микросборок
- •Бескорпусная герметизация
- •Контроль герметичности
Контроль герметичности
Качество герметизации корпусов оценивают наличием дефектов визуально и наличием течей. В качестве единицы измерения используют течь, при которой за 1 с в объеме 1 л, где создан вакуум, давление возрастает на 1 мкм рт. ст. Загерметизированные приборы контролируют на наличие малых и больших течей. Для контроля малых течей чаще всего применяют масс спектрометрический метод и метод с использованием
Рис. 7.51. Схема установки герметизации шовной контактной сваркой:
1 — корпус микросхемы; 2 — прижимной ролик; 3 — технологическая оснастка; 4 — монтажный стол; 5 — сварное соединение
электроотрицательного газа. Масс-спектрометрический метод контроля герметичности МС широко распространен, так как обладает высокой чувствительностью и надежностью.
Он основан на разделении молекул сложной парогазовой смеси по массам и измерении ионного тока ионизированных молекул какой-либо определенной массы. В качестве контрольного газа обычно используют гелий, так как он обладает высокой проникающей способностью; малым содержанием в атмосфере, что дает незначительный фоновый уровень при измерениях; масс-спектрометрический пик гелия резко отличается от пиков газов, содержащихся в атмосфере; гелий при попадании в прибор не оказывает влияния на структуру и работоспособность устройства.
Контролируемые МС спрессовывают в камере опрессовки в атмосфере гелия под давлением 400 кПа в течение 4... 6 ч. Затем их помещают в камеру, где создается вакуум. Если в процессе опрессовки гелий проник через течи в корпус, то его утечка в вакууме обнаруживается течеискателем, и прибор отбраковывается. К недостаткам масс-спектрометрического метода контроля герметичности следует отнести низкую производительность; сложность обслуживания оборудования; необходимость создания высокого вакуума; высокую квалификацию специалистов;невозможность контролировать большие течи, так как при наличии в корпусе больших течей гелий выходит через них до контроля герметичности.
Для контроля герметичности по большим течам чаще всего используют вакуумно-жидкостной или пузырьковый методы. Вакумно-жидкостной метод основан на визуальном наблюдении выходящих через течи пузырьков воздуха. В этом случае МС помещают в специальную жидкость (уайт-спирит), над которой создают вакуум. Вследствие перепада давления воздух из негерметичного корпуса МС будет выходить через течи в виде непрерывной цепочки пузырей.
При контроле герметичности на большие течи пузырьковым методом контролируемые МС помещают в жидкость (этиленгликоль), нагретую до температуры порядка 120... 140 °С. Течь определяют также по наличию непрерывной цепочки пузырей.