
- •Введение
- •1. Основные законы и компоненты электрических цепей и методы расчёта
- •1.1. Организация электрических цепей
- •1.2. Источники электродвижущей силы (э.Д.С.) и тока и другие компоненты электрических цепей
- •1.3. Основные законы электротехники
- •1.4. Порядок расчёта электрических цепей в общем случае
- •1.5. Расчёт схемы методом контурных токов
- •1.6. Расчёт схемы методом узлового напряжения
- •1.7. Расчёт схемы методом эквивалентных преобразований
- •1.8. Расчёт схемы методом наложения (суперпозиции) токов
- •1.9. Метод эквивалентного генератора
- •2. Особенности функционирования электрических цепей при воздействии переменных токов и напряжений
- •2.1. Свойства и параметры электрических
- •2.1.1 Источники и параметры синусоидальных э.Д.С.
- •2.1.2 Использование векторных диаграмм при описании синусоидальных сигналов
- •2.1.3 Последовательная цепь при синусоидальном сигнале
- •2.10 Схемы, если на её вход подаётся гармонический сигнал с амплитудой 10в
- •2.1.4 Активная, реактивная и полная мощности
- •2.1.5 Комплексный метод расчёта электрических цепей
- •2.1.6 Частотные свойства простейших электрических цепей
- •2.2. Свойства и параметры электрических цепей при воздействии э.Д.С. И токов произвольной формы 2.2.1 Общие сведения
- •2.2.2 Переходные процессы в простейших электрических цепях
- •3. Полупроводниковые приборы 3.1 Полупроводники 3.1.1 Общие сведения
- •3.1.2 Примесный полупроводник
- •3.1.3 Токи в полупроводниках
- •3.2 Полупроводниковый диод 3.2.1 Контактные явления
- •3.2.3 Особенности расчёта схем с диодами и упрощённые модели диодов
- •3.2.4 Параметры полупроводниковых диодов
- •3.2.5. Разновидности диодов
- •3.3 Биполярные транзисторы 3.3.1 Общие сведения
- •3.3.2 Основные схемы включения транзистора
- •3.3.3 Основные параметры биполярных транзисторов
- •3.4 Полевые транзисторы 3.4.1 Общие сведения
- •3.4.2 Основные параметры полевых транзисторов Электрические параметры
- •4 Элементы цифровой техники
- •4.1 Транзисторный ключ и его инвертирующие свойства
- •4.1.1 Общие сведения
- •4.1.2 Транзисторный ключ на биполярном транзисторе Анализ работы ключа в статике
- •4.1.3 Транзисторный ключ на комплементарных мдп-транзисторах
- •4.2 Физическая реализация логических функций
- •4.3 Транзисторно-транзисторный логический элемент 4.3.1 Базовая схема и принцип работы
- •4.3.2 Некоторые разновидности элементов транзисторно-транзисторной логики
- •4.4 Логические элементы на комплементарных мдп-транзисторах
- •4.5 Триггеры
- •4.5.1 Общие сведения
- •4.5.2 Асинхронные rs-триггеры
- •4.5.3 Синхронные триггеры
- •5 Линейные усилители электрических сигналов 5.1 Общие сведения
- •5.2 Некоторые положения теории обратной связи
- •5.3 Схемные решения усилительных каскадов
- •5.4 Операционные усилители 5.4.1 Общие сведения
- •5.4.2 Масштабирующие усилители
- •5.4.3 Суммирующие усилители
- •5.4.4 Интегрирующий усилитель
- •5.4.5 Дифференцирующий усилитель
- •5.4.5 Проблема дрейфа нуля и её решение
- •Заключение
- •Содержание
3.3.2 Основные схемы включения транзистора
В зависимости от того, какой из электродов транзисторов является общим для входной и выходной цепи, различают три основные схемы включения:
Схема с общим эмиттером находит наибольшее применение, обладает средним входным сопротивлением и средним выходным, способна усиливать сигнал по току и напряжению. Простейшая схема усилительного каскада предложена на рисунке 3.15а.
Рисунок 3.15
Можно заметить, что эмиттер в данной схеме – общий электрод для входной и выходной цепей. R2 – резистор коллекторной нагрузки позволяет преобразовать изменение коллекторного тока в изменение коллекторного напряжения по следующей формуле: UКЭ = E – IК * R2. R1 – резистор, который задает начальный ток базы. Разумным образом выбирая сопротивление этого резистора задаём начальное напряжение коллектор – эмиттер (Uкэ=) и начальный ток базы (Iб=) и коллектора (Iк=). Справедливы равенства:
Iб==Iк=/β, Uкэ==E-R2ּIк=. Конденсатор С1 служит для исключения влияния источника сигнала на режим работы транзистора в статике, пропускает только переменную составляющую сигнала. Конденсатор С2 служит для преобразования однополярных изменений напряжения на коллекторе в двухполярные изменения напряжения на нагрузке и исключает влияние цепи нагрузки на статический режим работы транзистора. В предложенном варианте схемы, чтобы каскад усиливал линейно сигнал, необходимо разумным образом выбирать режим работы транзистора по постоянному току. Одно из условий работы каскада в линейном режиме можно представить в виде неравества: E> Uкэ=>0. На рисунке 3.15б показаны временные диаграммы сигналов в схеме с общим эмиттером в предположении синусоидального сигнала на входе uвх(t). Можно заметить, что амплитуда выходного
напряжения на рисунке больше амплитуды входного сигнала, причём, если на входе положительная полуволна, на выходе – отрицательная и наоборот. Отношение выходного напряжения к входному называют коэффициентом усиления по напряжению: ku=uвых/uвх.
Схема с общим коллектором, или эмиттерный повторитель, обладает высоким входным сопротивлением, низким выходным, не усиливает по напряжению (ku≈1), усиливает по току и обладает хорошими частотными свойствами. Чтобы эмиттерный повторитель был работоспособен, необходимо правильно задать начальное положение рабочей точки. Этого можно достичь применением резисторных делителей или использованием двухполярных питающих напряжений, как это сделано на рисунке 3.16а. Временные диаграмм работы каскада предложены на рисунке 3.16б.
Сигнал на эмиттере транзистора является копией сигнала на базе, но смещен вниз на прямое падение напряжения база – эмиттер, то есть для кремниевого транзистора примерно на 0,7В: Uэ=≈0,7В. Наличие конденсатора C1 на выходе позволяет избавиться от этой постоянной составляющей, Так что с высокой точностью для схемы справедливо равенство:
uвых(t)≈uвх(t).
Схема с общей базой обладает максимально низким входным сопротивлением и высоким выходным сопротивлением, не усиливают по току, а усиливают по напряжению, обладает хорошими частотными свойствами. Возможное схемное решение каскада в этом случае и временные диаграммы работы предложены на рисунке 3.17.
В данном случае база транзистора соединена с общим проводом. Входной сигнал подается на эмиттер через конденсатор, а выходной снимается с коллектора. Поскольку база соединена с общим проводом по постоянному току, чтобы обеспечить нормальный режим, приходится эмиттерную цепь питать от источника другой полярности. При этом эмиттерный ток определятся сопротивлением R1 и напряжением источника Е2.