
- •Элементы комбинаторного анализа.
- •Сущность и условия применения теории вероятностей.
- •Основные понятия теории вероятностей.
- •Вероятностное пространство.
- •Непосредственный подсчет вероятности.
- •Теоремы сложения вероятностей.
- •Теоремы умножения вероятностей.
- •Теорема о вероятности хотя бы одного события.
- •Формула полной вероятности.
- •Теорема Байеса.
- •Повторные испытания. Схема Бернулли.
- •Формула Бернулли.
- •Локальная теорема Лапласа.4
- •Интегральная теорема Лапласа.
- •Случайные величины, способы их описания.
- •Основные числовые характеристики дискретных случайных величин.
- •Основные числовые характеристики непрерывных случайных величин.
- •Биномиальный закон распределения вероятностей.
- •Закон распределения вероятностей Пуассона.
- •Равновероятностный закон распределения вероятностей.
- •Нормальный закон распределения вероятностей.
- •Экспоненциальный закон распределения вероятностей. Функция надежности.
- •Двумерные случайные величины. Условные законы распределения составляющих системы дискретных и непрерывных случайных величин.
- •Условные законы распределения составляющих дискретной двумерной случайной величины.
- •Функция распределения двумерной случайной величины.
- •Числовые характеристики системы двух случайных величин.
- •Зависимые и независимые случайные величины. Ковариация и коэффициент корреляции.
- •Уравнения линейной регрессии у на х и х на у. Коэффициент регрессии.
- •Цепи Маркова. Матрица переходных вероятностей.
- •Неравенство Чебышева. Закон больших чисел и его следствие.
- •Центральная предельная теорема. Теорема Ляпунова.
Теоремы сложения вероятностей.
Теорема (сложения вероятностей). Вероятность суммы двух несовместных событий равна сумме вероятностей этих событий.
Следствие 1: Если события образуют полную группу несовместных событий, то сумма их вероятностей равна единице.
Определение. Противоположными называются два несовместных события, образующие полную группу.
Теорема. Вероятность появления хотя бы одного из двух совместных событий равна сумме вероятностей этих событий без вероятности их совместного появления.
Следствие 2: Сумма вероятностей противоположных событий равна единице.
Определение. Событие А называется независимым от события В, вероятность события А не зависит от того, произошло событие В или нет. Событие А называется зависимым от события В, если вероятность события А меняется в зависимости от того, произошло событие В или нет.
Теоремы умножения вероятностей.
Теорема. (Умножения вероятностей) Вероятность произведения двух событий (совместного появления этих событий) равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое событие уже наступило.
Также можно записать:
Доказательство этой теоремы непосредственно вытекает из определения условной вероятности.
Если события независимые, то , и теорема умножения вероятностей принимает вид:
В случае произведения нескольких зависимых событий вероятность равна произведению одного из них на условные вероятности всех остальных при условии, что вероятность каждого последующего вычисляется в предположении, что все остальные события уже совершились.
Из теоремы произведения вероятностей можно сделать вывод о вероятности появления хотя бы одного события.
Если в результате испытания может появиться п событий, независимых в совокупности, то вероятность появления хотя бы одного из них равна
Здесь событие А обозначает наступление хотя бы одного из событий Ai, а qi – вероятность противоположных событий .
Теорема о вероятности хотя бы одного события.
Пусть в результате испытания могут появиться n событий, независимых в совокупности, либо некоторые из них (в частности, только одно или ни одного), причем вероятности появления каждого из событий известны. Как найти вероятность того, что наступит хотя бы одно из этих событий? Например, если в результате испытания могут появиться три события, то появление хотя бы одного из этих событий означает наступление либо одного, либо двух, либо трех событий. Ответ на поставленный вопрос дает следующая теорема.
Теорема. Вероятность
появления хотя бы одного из событий
А1 ,
А2 ,
..., Аn ,
независимых в совокупности, равна
разности между единицей и произведением
вероятностей противоположных событий
Р (A) = 1 — q1q2 ... qn.(*)
Доказательство
Ч а с т н ы й с л у ч а й. Если события А1 , А2 , ..., Аn имеют одинаковую вероятность, равную р, то вероятность появления хотя бы одного из этих событий
P (A) = l — qn. (**)
Формула полной вероятности.
Формула полной вероятности позволяет вычислить вероятность интересующего события через условные вероятности этого события в предположении неких гипотез, а также вероятностей этих гипотез.
Пусть
дано вероятностное
пространство
,
и полная группа попарно несовместных
событий
,
таких что
.
Пусть
—
интересующее нас событие. Тогда
.
Формула
полной вероятности также имеет следующую
интерпретацию. Пусть
— случайная
величина,
имеющая распределение
.
Тогда
,
т.е. априорная вероятность события равна среднему его апостериорной вероятности.