
- •Элементы комбинаторного анализа.
- •Сущность и условия применения теории вероятностей.
- •Основные понятия теории вероятностей.
- •Вероятностное пространство.
- •Непосредственный подсчет вероятности.
- •Теоремы сложения вероятностей.
- •Теоремы умножения вероятностей.
- •Теорема о вероятности хотя бы одного события.
- •Формула полной вероятности.
- •Теорема Байеса.
- •Повторные испытания. Схема Бернулли.
- •Формула Бернулли.
- •Локальная теорема Лапласа.4
- •Интегральная теорема Лапласа.
- •Случайные величины, способы их описания.
- •Основные числовые характеристики дискретных случайных величин.
- •Основные числовые характеристики непрерывных случайных величин.
- •Биномиальный закон распределения вероятностей.
- •Закон распределения вероятностей Пуассона.
- •Равновероятностный закон распределения вероятностей.
- •Нормальный закон распределения вероятностей.
- •Экспоненциальный закон распределения вероятностей. Функция надежности.
- •Двумерные случайные величины. Условные законы распределения составляющих системы дискретных и непрерывных случайных величин.
- •Условные законы распределения составляющих дискретной двумерной случайной величины.
- •Функция распределения двумерной случайной величины.
- •Числовые характеристики системы двух случайных величин.
- •Зависимые и независимые случайные величины. Ковариация и коэффициент корреляции.
- •Уравнения линейной регрессии у на х и х на у. Коэффициент регрессии.
- •Цепи Маркова. Матрица переходных вероятностей.
- •Неравенство Чебышева. Закон больших чисел и его следствие.
- •Центральная предельная теорема. Теорема Ляпунова.
Неравенство Чебышева. Закон больших чисел и его следствие.
Нера́венство Чебышева, известное также как неравенство Биенэме — Чебышева, это распространённое неравенство из теории меры и теории вероятностей. Оно было первый раз получено Биенэме (фран.) в 1853 году, и позже также Чебышевым. Неравенство, использующееся в теории меры, является более общим, в теории вероятностей используется его следствие.
Неравенство Чебышева в теории вероятностей утверждает, что случайная величина в основном принимает значения, близкие к своему среднему. Говоря более точно, оно даёт оценку вероятности, что случайная величина примет значение, далёкое от своего среднего. Неравенство Чебышева является следствием неравенства Маркова.
[править]Формулировки
Пусть случайная
величина
определена
на вероятностном
пространстве
,
а её математическое
ожидание
и дисперсия
конечны.
Тогда
,
где
.
Если
,
где
—
стандартное отклонение и
,
то получаем
.
В частности, случайная
величина с конечной дисперсией отклоняется
от среднего больше, чем на
стандартных
отклонения, с вероятностью меньше
.
Она отклоняется от среднего на
стандартных
отклонения с вероятностью меньше
.
Зако́н больши́х чи́сел в теории вероятностей утверждает, что эмпирическое среднее (среднее арифметическое) достаточно большой конечной выборки из фиксированного распределения близко к теоретическому среднему (математическому ожиданию) этого распределения. В зависимости от вида сходимости различают слабый закон больших чисел, когда имеет место сходимость по вероятности, и усиленный закон больших чисел, когда имеет место сходимость почти всюду.
Всегда найдётся такое количество испытаний, при котором с любой заданной наперёд вероятностью относительная частота появления некоторого события будет сколь угодно мало отличаться от его вероятности.
Общий смысл закона больших чисел — совместное действие большого числа случайных факторов приводит к результату, почти не зависящему от случая.
На этом свойстве основаны методы оценки вероятности на основе анализа конечной выборки. Наглядным примером является прогноз результатов выборов на основе опроса выборки избирателей.
Слабый закон больших чисел
Пусть есть бесконечная
последовательность (последовательное
перечисление) одинаково распределённых
и некоррелированных случайных величин
,
определённых на одном вероятностном
пространстве
.
То есть их ковариация
.
Пусть
.
Обозначим
выборочное
среднее первых
членов:
.
Тогда
.
Усиленный закон больших чисел
Пусть есть бесконечная последовательность независимых одинаково распределённых случайных величин , определённых на одном вероятностном пространстве . Пусть . Обозначим выборочное среднее первых членов:
.
Тогда
почти
наверное.
Известная теорема Я. Бернулли, устанавливающая связь между частотой события и его вероятностью, может быть доказана как прямое следствие закона больших чисел.
Теорема Я. Бернулли утверждает устойчивость частоты при постоянных условиях опыта. Но при изменяющихся условиях опыта аналогичная устойчивость также существует. Теорема, устанавливающая свойство устойчивости частот при переменных условиях опыта, называется теоремой Пуассона и формулируется следующим образом:
Если производится независимых опытов и вероятность появления события в -м опыте равна , то при увеличении частота события сходится по вероятности к среднему арифметическому вероятностей .