
- •Введение
- •Основы теории резания материалов
- •1. Движения, происходящие при обработке резанием
- •2. Инструментальные материалы
- •2.1. Требования, предъявляемые к инструментальным материалам
- •2.2. Инструментальные стали
- •Углеродистые инструментальные стали
- •2.2.2. Легированные инструментальные стали
- •Быстрорежущие стали
- •2.3. Металлокерамические твердые сплавы
- •2.4. Дисперсионно -твердеющие сплавы
- •2.5. Минералокерамика
- •2.6. Сверхтвердые материалы (стм)
- •2.7. Выбор инструментального материала
- •3. Геометрия режущего инструмента
- •3.1 Общие сведения
- •3.2. Устройство проходного токарного резца
- •3.3. Общие понятия и определения
- •3.4. Геометрия проходного токарного резца
- •3.5. Назначение углов
- •3.6. Зависимости между углами, измеряемыми в различных координатных и секущих плоскостях
- •3.7. Влияние установки резца на станке на его геометрию
- •3.7.1. Резец повернут в основной плоскости
- •3.7.2. Резец смещен по вертикали от оси вращения шпинделя токарного станка
- •3.8. Влияние различных движений, составляющих движение резания, на геометрию
- •3.8.1. Влияние движения подачи
- •3.8.2. Влияние движения формообразования при нарезании резьбы резцом
- •3.8.3. Влияние вибрационного движения
- •3.9. Конструкция и геометрия спирального сверла
- •3.9.1. Конструкция
- •3.9.2. Геометрия
- •3.10. Геометрия фрез
- •3.10.1. Общие признаки
- •3.10.2. Цилиндрическая фреза с прямыми зубьями
- •3.10.3. Фреза с винтовыми зубьями
- •3.10.4. Торцовая фреза со вставными ножами
- •Элементы режима резания и геометрия срезаемого слоя
- •4.1. Общие понятия и определения
- •4.2. Строгание
- •4.2.1.Элементы режима резания
- •4.2.2. Геометрия срезаемого слоя
- •4.2.3. Геометрическая шероховатость
- •4.3. Точение
- •4.3.1. Режим резания
- •4.3.2. Геометрия срезаемого слоя
- •4.3.3. Геометрическая шероховатость
- •4.4. Обработка цилиндрической фрезой с прямыми зубьями
- •4.4.1. Элементы режима резания
- •4.4.2. Элементы фрезерования
- •4.4.3. Геометрия срезаемого слоя
- •4.4.4. Геометрическая шероховатость
- •4.5. Два вида фрезерования – попутное и встречное
- •4.6. Обработка цилиндрической фрезой с винтовыми зубьями
- •4.6.1. Элементы режима резания
- •4.6.2. Геометрия срезаемого слоя
- •4.7. Равномерное фрезерование
- •4.8. Торцовое фрезерование
- •4.8.1. Виды торцового фрезерования
- •4.8.2. Элементы режима резания
- •4.8.3. Элементы фрезерования
- •4.8.4. Геометрия срезаемого слоя
- •4.8.5. Геометрическая шероховатость
- •4.9. Круглое наружное шлифование
- •4.9.1. Понятие об абразивном инструменте
- •4.9.2. Кинематика и элементы режима резания
- •4.9.3. Толщина срезаемого слоя
- •4.10. Нарезание резьбы
- •4.10.1. Нарезание резьбы резцом
- •4.10.2. Нарезание резьбы гребенкой
- •4.10.3. Нарезание резьбы метчиками и плашками
- •4.10.4. Нарезание резьбы гребенчатыми фрезами
- •4.11. Сверление
- •4.12. Зенкерование и развертывание
- •5. Процесс образования стружки
- •5.1. Характеристика стружек
- •5.2. Механизм пластической деформации
- •В процессе пластической деформации
- •5.3. Механизм образования стружки
- •5.4. Причины образования различных стружек
- •5.9. Влияние угла сдвига на толщину стружки
- •5.5. Показатели деформации срезаемого слоя
- •5.5.1. Усадка
- •5.5.2. Относительный сдвиг
- •5.6 Прогнозирование вида и размеров стружки при резании металлов
- •5.7. Скорость деформации
- •5.7.1 Общие сведения
- •5.7.2 Оценка средней скорости пластической деформации при резании металлов
- •5.8. Исследование деформации срезаемого слоя методом координатных сеток
- •5.9. Зона стружкообразования
- •5.10. Влияние факторов процесса резания на деформацию срезаемого слоя
- •5.11. Внутреннее строение стружки
- •5.12 Определение угла текстуры стружки
- •5.13. Определение угла сдвига
- •5.14. Определение среднего коэффициента трения при резании металлов
- •5.15 Оценка предельного значения угла сдвига при резании материалов
- •6. Явления, сопутствующие процессу резания и влияющие на качество обработки
- •6.1. Общая характеристика
- •6.2. Нарост
- •6.3. Образование остаточных напряжений
- •6.4. Влияние остаточных напряжений на эксплуатационную прочность деталей машин
- •6.5. Измерение остаточных напряжений
- •6.6. Вибрации при резании металлов
- •6.7. Вибрационное резание
- •6.8. Деформационное упрочнение (наклёп)
- •7. Силы резания
- •7.1. Значение вопроса
- •7.2. Силы, действующие на лезвие проходного токарного резца
- •7.3. Эмпирические формулы для расчета сил резания
- •7.4. Удельное давление резания
- •7.5. Соотношение между составляющими силы резания
- •7.6. Экспериментальное исследование сил резания
- •7.6.1. Принцип измерения сил и типы динамометров
- •7.6.2. Методика проведения эксперимента
- •7.6.3. Обработка результатов измерения
- •7.7. Расчет сил, действующих на лезвие инструмента
- •7.7.1. Постановка вопроса
- •7.7.3. Расчет сил, действующих по задней поверхности лезвия
- •7.7.4. Теоретические формулы для расчета составляющих силы резания
- •7.7.5 Прогнозирование радиуса скругления режущей кромки инструмента
- •7.7.6. Расчет сил, действующих при косоугольном резании
- •7.7.7 Влияние угла наклона режущей кромки на главную составляющую силы резания
- •7.8. Определение расчетных нагрузок при проектировании элементов технологических систем
- •7.8.1. Общие положения
- •7.8.2. Расчет сил резания при обработке фрезами с прямыми зубьями
- •7.8.3. Расчет сил, действующих при обработке фрезами с винтовыми зубьями
- •7.8.4. Расчет сил, действующих при торцовом фрезеровании
- •7.8.5. Расчет сил, действующих при протягивании
- •7.8.6. Расчет сил, действующих при сверлении
- •8.3. Температура резания
- •8.4. Расчет температуры на контактных поверхностях лезвия режущего инструмента
- •8.4.1. Общие сведения
- •8.4.2. Понятие о температурном поле
- •8.4.3. Понятие о градиенте температуры
- •8.4.4. Основной закон теплопроводности
- •8.4.5. Дифференциальное уравнение теплопроводности
- •8.4.6. Условия однозначности при решении дифференциального уравнения теплопроводности
- •8.4.7. Схематизация формы и теплофизических характеристик тел, участвующих в теплообмене
- •8.4.8. Фундаментальное решение дифференциального уравнения теплопроводности
- •8.4.9. Описание формы тел и условий на граничных поверхностях с помощью системы отраженных источников
- •8.4.10. Конвективный теплообмен
- •8.4.10.1. Общие сведения
- •8.4.10.2. Теплоотдача при естественной конвекции
- •8.4.10.3. Теплоотдача при вынужденном движении жидкости или газа
- •8.4.10.4. Регулярный режим охлаждения
- •8.4.10.5. Теплообмен при изменении агрегатного состояния жидкости
- •8.4.10.6. Теплообмен при конденсации пара
- •8.4.10.7. Лучистый теплообмен
- •8.4.11. Расчет интенсивности источников тепла в зоне резания
- •Расчет средних температур на контактных площадках лезвия резца [25]
- •9. Износ и стойкость режущего инструмента
- •9.1. Природа и виды изнашивания режущего инструмента
- •9.2. Геометрия износа
- •9.3. Измерение износа инструмента
- •9.4. График износа инструмента. Понятие о стойкости инструмента и критерии его затупления
- •9.5. Зависимость стойкости от факторов процесса резания
- •9.6. Оптимальная стойкость инструмента
- •9.6.1. Постановка вопроса
- •9.6.2. Определение экономической стойкости
- •9.6.3. Определение стойкости, наибольшей производительности
- •9.7. Обрабатываемость резанием
- •9.8. Методы улучшения обрабатываемости материалов резанием
- •9.9. Прочность лезвия инструмента
- •9.9.1. Общие сведения
- •9.9.2. Хрупкое разрушение лезвия
- •9.9.3. Пластическое разрушение лезвия
- •10. Определение оптимального режима резания
- •10.1. Обоснование методики выбора элементов режима резания
- •10.2. Токарная обработка
- •10.2.1. Общие указания
- •10.2.2. Выбор геометрии режущей части
- •10.2.3. Глубина резания
- •10.2.4. Определение наибольшей технологически допустимой подачи
- •10.2.4.1. Определение подачи, допускаемой шероховатостью обработанной поверхности
- •10.2.4.2. Определение подачи из условия обеспечения заданной точности обработки
- •10.2.5. Выбор сечения стержня резца
- •10.2.6. Определение силы подачи
- •10.2.7. Определение скорости резания
- •10.2.8. Определение потребной мощности станка
- •10.2.9. Выбор станка
- •10.2.10. Определение параметров настройки токарного станка
- •10.3. Определение режима резания для многоинструментальной обработки
- •10.4. Фрезерование
- •10.4.1. Общие указания
- •10.4.2. Определение подачи
- •10.4.3. Определение скорости резания и выбор станка
- •10.5. Сверление
- •10.5.1. Общие рекомендации
- •10.5.2. Определение подачи
- •10.5.3. Определение скорости резания, мощности и силы подачи
- •10.6. Зенкерование и развертывание
- •10.6.1. Общие рекомендации
- •10.6.2. Определение подачи
- •10.6.3. Определение скорости резания, мощности станка и его настроечных данных
- •10.7. Шлифование
- •10.7.1. Общие рекомендации
- •10.7.2. Определение глубины резания
- •10.7.3. Выбор подачи
- •10.8. Нарезание резьбы
- •10.8.1. Общие указания
- •10.8.2. Нарезание резьбы резцами, плашками и винторезными головками
- •10.8.3. Нарезание резьбы гребенчатыми фрезами
- •10.8.4. Нарезание резьбы метчиками
- •10.9. Особенности обработки резанием пластмасс
- •Основные физико-механические свойства некоторых пластмасс
- •Рекомендуемые геометрические параметры режущего инструмента для обработки пластмасс резанием
- •Режимы резания при обработке пластмасс
- •11. Процессы физико-химической обработки
- •11.1. Общая характеристика физико-химических методов обработки (фхо)
- •11.2. Электроэрозионная обработка (ээо)
- •11.2.1. Общая характеристика ээо
- •11.2.2. Основные виды технологических процессов ээо
- •11.2.3. Оборудование для ээо
- •11.3. Электрохимическая обработка (эхо)
- •11.4. Ультразвуковая обработка материалов (узом)
- •11.5. Лучевая обработка
- •11.5.1. Лазерная обработка
- •11.5.2. Электронно-лучевая обработка
- •11.6 Комбинированные методы обработки (кмо)
- •Приложение
- •Библиографический список
- •Содержание
- •6. Явления, сопутствующие процессу резания и влияющие
- •Процессы механической и физико-химической обработки материалов
- •107077, Г. Москва, Стромынский пер., 4
4.8.5. Геометрическая шероховатость
Определяется
высотой остаточных гребешков. Поскольку
каждый зуб фрезы представляет собой
резец, то справедливо выражение (4.1).
Учитывая, что угол φ1
= 3…5˚
и
,
ctg φ1
>
ctg φo,
высота остаточного гребешка определяется
h
= Sztg
φ1..
Однако для практических расчетов это
выражение не годится, так как вершины
зубьев из-за отклонений заточки фрезы
и установки на cтанке
не лежат в одной плоскости, перпендикулярной
оси вращения фрезы, что характеризуется
торцовым биением
т.
Поэтому обработанная поверхность
формируется одним зубом. Расстояние
между вершинами остаточных гребешков
равно подаче на оборот So,
а не Sz.
Если торцовое биение зубьев
т
>
So
tg
φ1,
то h
= So
tg φ1,
при
т
<
Sо
tg φ1,
h =
т.
4.9. Круглое наружное шлифование
4.9.1. Понятие об абразивном инструменте
Шлифование - обработка деталей абразивным инструментом, представляющим тело вращения и состоящим из твердых мельчайших частичек - зерен, соединенных между собой связкой. В качестве зерен применяются электрокорунд , карбид кремния, алмазы и др. В качестве связки применяются вещества различного состава, например керамическая связка, состоящая в основном из белой глины, полевого шпата, борного стекла и др.; вулканитовая – из каучука и др. Основным недостатком большинства связок является их сравнительно низкая прочность. Материалы зерен и связки, их количественные соотношения весьма разнообразны. Это определяет многообразие абразивных инструментов. Однако принцип работы их одинаков: зерно – режущие элементы инструмента, несущие лезвия, связка удерживает зерна в инструменте. Как зерна, так и лезвия на них имеют весьма разнообразную форму.
4.9.2. Кинематика и элементы режима резания
При круглом продольном наружном шлифовании одновременно вращаются абразивный круг и заготовка. Круг совершает относительно заготовки винтовое движение (см. рис.4.14) в результате сложения вращения заготовки и продольного ее перемещения. В момент выхода круга из заготовки ему сообщается движение по радиусу обрабатываемой поверхности на глубину t, называемое движением врезания.
Вращение круга - это главное движение, вращение заготовки и ее продольное перемещение - движения, составляющие движение подачи; подвод круга к заготовке и движение врезания - установочные движения.
Режим резания состоит из следующих элементов: скорости резания V, скорости вращения заготовки Vз, продольной подачи Sп, и глубины резания t. Скорость резания - линейная скорость вращения круга
-
V =
π dk nk
, (м/с), (4.4)
6∙10 4
где dк - диаметр круга, мм; nк - число оборотов круга в минуту.
Скорость резания V выбирается в пределах 25 … 35 м/с и ограничивается прочностью тела круга, который при чрезмерно большой скорости может разрушиться под действием центробежных сил.
Скорость вращения заготовки определяется с учетом конкретных рекомендаций из соотношения Vз = (0,01...0, 05) V, причем она возрастает с увеличением прочности связки и снижением прочности обрабатываемого материала. Определив Vз, находят число оборотов заготовки:
nз= |
6∙104 Vз |
,об/мин |
(4.5) |
π dз |
|
где dз – диаметр заготовки, мм; Vз – скорость вращения заготовки, м/с.
Рис. 4.14. Элементы круглого наружного шлифования.
Для определения продольной подачи заготовки Sп выбирают подачу на оборот заготовки из соотношения S0 = k Bk , где k = 0,2…0,4 для чистового шлифования; К = 0,4…0,6 для чернового. Продольная подача Sп = S0nз = kBknз. Глубина резания выбирается из интервала t = 0,005…0,5 мм.
Продольная подача определяет основное время шлифования T0 и производительность обработки:
T0 = |
(L+Bk) δ |
kBknз t |
где L – длина обработки; δ – припуск на обработку.
Производительность шлифования
-
П =
1
=
kBknз t
(4.6)
T0
(L+Bk ) δ
и, как отсюда следует, определяется скоростью вращения заготовки, а поскольку последняя зависит от скорости резания, то в конечном счете – скоростью резания.