- •1Й вопрос
- •5.3.2. Водоразбавляемые олигоэфиры
- •Техника безопасности при производстве эпоксидных полимеров и защита окружающей среды
- •Вопр.2 Фенолофурфурольные олигомеры
- •Трехатомные спирты
- •Карбоновые кислоты и ангидриды алифатического ряда
- •Карбоновые кислоты ароматического ряда и их производные
- •2 Модифицированные фенолоформальдегидные олигомеры
- •3 Технологическая схема производства меламино- и мочевиноформальдегидных олигомеров, модифицированных бутанолом:
- •Билет №11 Алкидно-стирольные олигоэфиры
- •Модифицированные карбамидоформальдегиды
- •Структура и свойства карбамидоформальдегидных олигомеров
- •Лкм на основе эпоксидных олигомеров
- •1. Олигоэфиракрилаты
- •5.10.9. Свойства и применение аминоформальдегидов
- •5.10.10. Технология получения аминоформальдегидных олигомеров
- •Олигоэфиры, модифицированные растительными маслами и их жирными кислотами
- •Фенолформальдегидные олигомеры,совмещенные с другими полимерами (па, пвх, каучуками, поливенилбутиралем, карбамидоформальдегидными олигомерами)
- •Лакокрасочные материалы на основе эпоксидных олигомеров
- •1) По типу эпоксидного связующего и отвердителя;
- •Билет№12
- •1 Уралкиды
- •Вопр.3 Лакокрасочные материалы на основе полиуретановых пленкообразователей
- •1 Полиэфируретаны. Лаки, отверждаемые влагой воздуха.
- •2 Модифицированные маслами фенолоформальдегидные олигомеры.
- •3 Ненасыщенные олигоэфиры, отверждаемые уф- и радиационным облучением
- •Билет № 19
- •Механизм отверждения пленкообразующих композитов на основе олигоэфирмалеинатов. Типы лаков на их основе.
- •Порошковые эпоксидные материалы. Отверждения покрытия с их использованием.
- •Лакокрасочные материалы на основе модифицированных кремнийорганических пленкообразователей.
- •По полиуретанового типа
- •Новолачные олигомеры
- •Резольные олигомеры
- •2. Отверждение эпоксидных олигомеров аминами, дикарбоновыми кислотами, каталитическое отверждение. Отверждение
- •Отверждение аминами
- •Отверждение дикарбоновыми кислотами и их ангидридами
- •Каталитическое отверждение
- •3. Лакокрасочные материалы на основе органорастворимых алкидных олигомеров. Отверждение покрытий.
- •Отверждение эпоксидных олигомеров.
- •Гидроксилсодержащие компоненты для получения полиуретановых плёнкообразующих.
- •Водоразбавляемые олигоэфиры.
- •Способы получения и свойства алкидностирольных плёнкообразователей.
- •1.Немодифицированные насыщенные полиэфиры.
- •2.Поликонденсация фенола с формальдегидом при основном катализе.
2.Поликонденсация фенола с формальдегидом при основном катализе.
Резолы
О
сновной
катализ сводится к повышению активности
фенола в реакции с электрофильными
агентами (например, с формальдегидом).
Эффективность основного катализа
обусловлена, в первую очередь, способностью
фенола реагировать с формальдегидом в
форме псевдокислоты (С-Н-кислоты).
Образование анионов псевдокислоты с
высокой нуклеофильностью можно
представить следующей схемой:
A б в
Локализация отрицательного заряда в орто- и пара-положениях соответствующих анионов псевдокислоты (б и в) обеспечивает их высокую реакционную способность с формальдегидом:
В результате этих реакций, которые протекают при взаимодействии фенола с формальдегидом в присутствии щелочи, и других аналогичных превращений могут образоваться моно-, ди- и триметилольные производные фенола.
Следует отметить, что активность орто- и пара-положений метилолфенолов в щелочной среде выше, чем у исходного фенола, поэтому образование ди- и триметилольных производных происходит даже при избытке фенола в реакционной массе.
Образующиеся метилольные производные в щелочной среде (в отличие от кислот) вполне устойчивы до температуры 60С и не подвергаются дальнейшим превращениям. При более высоких температурах с их участием происходят реакции, показанные ниже на примере метилольных производных. Основной катализ эффективен при рН9.
Гомоконденсация метилольных производных:
К
онденсация
метилольных производных с фенолом:
В полученных продуктах ароматические ядра связаны в основном метиленовыми мостиками. Образующиеся наряду с метиленовыми диметиленэфирные мостики в щелочной среде неустойчивы и разлагаются с выделением формальдегида.
Конденсация фенола с формальдегидом в щелочной среде– экзотермическая реакция, однако тепловой эффект ее (58кДжмоль фенола) несколько ниже, чем в кислой среде. Относительная устойчивость метилольных производных в щелочной среде, особенно при невысоких температурах, позволяет легко управлять процессом синтеза олигомеров, останавливая его на любой стадии, вплоть до стадии образования ди- и триметилолфенолов.
Синтез фенолоформальдегидных олигомеров в щелочной среде ведут обычно в избытке формальдегида (мольное соотношение формальдегидфенол = 1,22,5), при этом получаются разветвленные олигомеры, содержащие функциональные метилольные группы:
Резолы
Резолы имеют молекулярную массу от 700 до 900. Молекулярно-массовое распределение довольно узкое и соответствует распределению по Флери.
3.Плёнкообразователи эпоксидного типа.
Эпоксидные пленкообразующие – это полимеры, олигомеры или мономеры, содержащие в молекуле не менее двух эпоксидных или глицидных групп, за счет которых происходит образование пространственного (сетчатого) полимера.
Поли- и олигоэпоксиды (их называют также эпоксидами или эпоксидными смолами) – это гетероцепные полимеры с молекулярной массой 3004000. Образуются они при взаимодействии эпоксидных производных с двух- или многоатомными спиртами, в том числе с двухатомными фенолами и бисфенолами. В качестве компонентов с эпоксигруппой для получения эпоксидов используют:
эпихлоргидрин эпоксибутен-3 дихлоргидрин глицерина
Спиртовым компонентом могут служить гидрохинон, резорцин, пирокатехин, новолаки, резолы, дифенилолпропан (4,4-диоксидифенил-2-пропан, бисфенол А, диан). Он легко получается конденсацией фенола с ацетоном:
Лакокрасочные материалы изготавливают, главным образом, на основе эпоксидов, получаемых взаимодействием дифенилолпропана с эпихлоргидрином в щелочной среде (так называемые диановые смолы). При мольном соотношении 12 получается диглицидиловый эфир дифенилолпропана:
При нагревании (65100С) диглицидилового эфира с дополнительным количеством дифенилолпропана происходит рост цепи с образованием олигомера:
Молекулярная масса такого олигомера 340. Его можно рассматривать как простейший эпоксид и как мономер для получения эпоксиолигомеров.
Если эпихлоргидрин (ЭХГ) и дифенилолпропан (ДФП) взяты в соотношении 32, то синтезируется олигоэпоксид с ММ625 (n1) и более высокой вязкостью. Для получения эпоксида с ММ1500 (n5) проводят сплавление исходного олигомера с дифенилолпропаном, приближая общее соотношение ЭХГДФП к 1; ДФП как бы связывает между собой концевые группы олигомерных молекул. При этом образуются твердые олигоэпоксиды с ММ4600 (n16) и Тразм150С. Более высокомолекулярные олигомеры пока не получают.
Часть эпоксидных групп при синтезе взаимодействует с гидроксильными. При этом молекулярная масса возрастает, а цепь олигомера становится разветвленной. Условно принято называть эпоксиды с ММ 300600 – низкомолекулярными; 6001500 – среднемолекулярными; 1500 и выше – высокомолекулярными.
Независимо от молекулярной массы каждая молекула олигоэпоксида обычно содержит две эпоксигруппы (по концам цепи). Поэтому относительное содержание эпоксигрупп, выражаемое эпоксидным числом, в диановых олигомерах падает (от 30 до 2%) по мере возрастания молекулярной массы, при этом снижается и реакционная способность эпоксида в реакциях отверждения. С другой стороны, эпоксиды с высокой молекулярной массой позволяют получать более стабильные композиции.
Наличие в макромолекуле эпоксида простых эфирных связей, придающих гибкость макроцепи, боковых гидроксильных групп, обуславливающих высокую адгезию, и реакционноспособных концевых эпоксигрупп, позволяющих проводить химическое отверждение, обеспечивает эпоксидным пленкообразователям чрезвычайно ценный комплекс эксплуатационных характеристик. Они обладают высокой адгезией к различным подложкам и щелочестойкостью.
В настоящее время объем производства и ассортимент эпоксидных пленкообразователей очень большой. Половина всех эпоксидов используется в лакокрасочной промышленности, остальное количество – при производстве стеклопластиков, клеев и пр.
Эпоксидные соединения очень реакционноспособны из-за относительной нестойкости трехчленного гетероцикла, способного разрываться двояко в зависимости от того, какая из связей (1) или (2) оказывается менее прочной:
Направление реакции зависит от условий и природы заместителя R. Например, электроотрицательный хлор в эпихлоргидрине упрочняет связь (2), и реакция идет по схеме А. Ведут ее при 90100С в присутствии щелочи.
При избытке эпихлоргидрина первоначально образуются продукты типа диглицидилового эфира, а затем олигомеры и полимеры.
Основная масса макромолекул содержит на обоих концах эпоксигруппы, и только немногие оканчиваются дифенилолпропаном. При температурах выше 100С возможно протекание побочной реакции эпоксигруппы с гидроксильной группой:
В
заимодействовать
с олигоэпоксидом может и исходный
эпихлоргидрин:
Поэтому эпоксиды обычно слегка разветвлены и содержат немного хлора.
В реакции образования олигоэпоксидов участвует n молекул дифенилолпропана и минимум (n+1) молекул эпихлоргидрина. Чем больше избыток эпихлоргидрина по сравнению со стехиометрическим количеством, тем ниже степень поликонденсации и молекулярная масса олигомера.
При производстве и применении эпоксидов необходимо соблюдать технику безопасности. Следует герметизировать и механизировать все операции, поскольку эпихлоргидрин, частично остающийся в олигомере, обладает высокой токсичностью (вызывает отравления и дерматиты).
Под действием катализаторов эпоксиды способны полимеризоваться за счет раскрытия эпоксидного цикла. Но образующиеся простые полиэфиры не обладают пленкообразующими свойствами и поэтому не используются в лакокрасочных композициях.
Наиболее распространено применение эпоксидов в следующих комбинациях:
а) с отвердителями. Отвердители при формировании покрытия переводят олигомер в пространственный полимер и придают ему ряд ценных свойств (нерастворимость, твердость, химическую стойкость и др.);
б) с модификаторами (полиамидами, фенолоальдегидами, алкидами и другими олигомерами), которые одновременно выполняют и функцию отвердителя.
