
- •1.1. Двойной интеграл
- •2. Геометрический и физический смысл двойного интеграла. Основные свойства двойного интеграла.
- •4 Вычисление двойного интеграла в полярных координатах
- •5 Приложения двойного интеграла Объем тела
- •Площадь плоской фигуры
- •6 Тройной интеграл
- •1) Разбиваем область на «элементарных областей» .
- •3) Возьмем произвольную точку .
- •5) Составляем интегральную сумму
- •Основные свойства тройного интеграла
- •7 Замена переменной в тройном интеграле. Вычисление тройного интеграла в цилиндрических и сферических координатах.
- •8. Некоторые приложения тройного интеграла в геометрии и физике
- •9. Криволинейный интеграл I рода. Основные свойства кри-I.
- •Основные свойства кри-I
- •10. Вычисление криволинейного интеграла I рода: явное представление кривой, параметрическое представление кривой, полярное представление кривой.
- •2.2. Вычисления криволинейного интеграла I рода
- •11. Некоторые приложения кри-I рода в геометрии и физике.
- •Площадь цилиндрической поверхности
- •12. Криволинейный интеграл II рода. Основные свойства кри-II.
- •Криволинейный интеграл II рода (кри-II)
- •Основные свойства кри-II
- •13. Вычисление кри-II: явное представление кривой, параметрическое представление кривой. Некоторые приложения кри-II.
- •2.5. Вычисления криволинейного интеграла II рода
- •Явное представление кривой
- •Параметрическое представление кривой
- •2.6. Некоторые приложения криволинейного интеграла II рода Площадь плоской фигуры
- •Работа переменной силы
- •14. Формула Остроградского – Грина.
- •15.Поверхностный интеграл I рода. Основные свойства поверхностного интеграла I рода. Вычисление поверхностного интеграла I рода.
- •3.2. Вычисление поверхностного интеграла I рода
- •16.Поверхностный интеграл II рода. Свойства поверхностного интеграла II рода.
- •3.3. Поверхностный интеграл II рода
- •17.Вычисление поверхностного интеграла II рода. Формула Остроградского - Гаусса для вычисления поверхностного интеграла II рода.
- •3.4. Вычисление поверхностного интеграла II рода
- •I способ
- •II способ
- •II способ
- •III способ
- •18. Скалярное поле. Поверхность и линии уровня. Производная по направлению. Градиент.
- •Производная по направлению
- •Градиент
- •19.Векторное поле. Векторные (силовые) линии. Векторная трубка.
- •20. Поток векторного поля через поверхность. Формула вычисления потока векторного поля. Источник и сток. Формула Остроградского – Гаусса для вычисления потока.
- •4.3. Поток векторного поля через поверхность
- •21.Дивергенция поля. Некоторые свойства дивергенции. Физический смысл дивергенции.
- •22. Циркуляция поля. Физический смысл циркуляции поля.
- •4.5. Циркуляция поля
- •23. Ротор поля. Некоторые свойства ротора. Формула Стокса.
- •4.6. Ротор поля. Формула Стокса
- •24. Векторные дифференциальные операции первого порядка.
- •Векторные дифференциальные операции первого и второго порядка
- •25. Векторные дифференциальные операции второго порядка.
- •26.Классификация векторных полей: определения соленоидального, потенциального и гармонического векторного поля.
- •4.8. Классификация векторных полей Соленоидальное векторное поле
- •Потенциальное векторное поле
- •Гармоническое векторное поле
- •27.Числовой ряд. -ая частичная сумма ряда. Сходимость и расходимость ряда. Некоторые свойства рядов. -ый остаток ряда.
- •5.1. Основные понятия
- •28. Сформулировать и доказать необходимый признак сходимости ряда. Достаточный признак расходимости ряда. Гармонический ряд.
- •5.2. Необходимый признак сходимости ряда
- •5.3. Достаточные признаки сходимости ряда
- •29. Признаки сравнения рядов. Признак Даламбера Признаки сравнения рядов.
- •Признак Даламбера
- •30. Радикальный признак Коши. Интегральный признак Коши. Ряд Дирихле.
- •Интегральный признак Коши
- •31. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •6.1. Знакочередующиеся ряды. Признак Лейбница
- •Абсолютная и условная сходимости рядов
- •32. Функциональный ряд. Точка сходимости. Область сходимости функциональног
- •7.1. Функциональные ряды
- •33. Степенной ряд. Сформулировать и доказать теорему Абеля.
- •34. Интервал и радиус сходимости степенного ряда. Интервал и радиус сходимости
- •Свойства степенных рядов
- •35. Ряды Тейлора и Маклорена. Разложение функций в степенной ряд.
- •Разложение функций в степенной ряд
- •36. Некоторые приложения степенных рядов.
- •Некоторые приложения степенных рядов
- •Вычисление значений функции
- •2. Вычисление интегралов
- •3. Приближенное решение дифференциальных уравнений
- •Способ последовательного дифференцирования
- •Способ неопределенных коэффициентов
- •37. Тригонометрический ряд. Формулы коэффициентов ряда Фурье
- •8.1. Периодические функции. Периодические процессы
- •Тригонометрический ряд Фурье
- •38.Разложение в ряд Фурье -периодических функций. Теорема Дирихле. Разложение в ряд Фурье четных и нечетных функций.
- •8.3. Разложение в ряд Фурье -периодических функций
- •8.4. Разложение в ряд Фурье четных и нечетных функций
- •39. Разложение в ряд Фурье функций произвольного периода.
- •40Уравнение колебаний струны.
- •Уравнение колебаний струны
- •Уравнение теплопроводности.
38.Разложение в ряд Фурье -периодических функций. Теорема Дирихле. Разложение в ряд Фурье четных и нечетных функций.
8.3. Разложение в ряд Фурье -периодических функций
Выясним условия, при которых ряд Фурье функции сходится и имеет своей суммой как раз функцию .
Будем рассматривать функции , имеющие период . Такие функции называются периодическими.
Сформулируем теорему (без доказательства), представляющую достаточное условие разложимости функции в ряд Фурье.
Теорема 8.1 (теорема Дирихле). Пусть периодическая функция на отрезке удовлетворяет двум условиям:
1. кусочно-непрерывна, т.е. непрерывна или имеет конечное число точек разрыва I рода;
2. кусочно-монотонна, т.е. монотонная на всем отрезке, либо этот отрезок можно разбить на конечное число интервалов так, что на каждом из них функция монотонна.
Тогда соответствующей функции ряд Фурье сходится на этом отрезке и при этом:
в точках непрерывности функции сумма ряда совпадает с самой функцией , т.е.
;
в каждой точке разрыва функции сумма ряда равна среднему арифметическому пределов функции справа и слева, т.е.
;
3. в точках
и
(на концах отрезка) сумма ряда равна
.
Таким образом, если функция удовлетворяет условиям 1 и 2 теоремы Дирихле, то на отрезке имеет место разложение (8.4), причем коэффициенты вычисляются по формулам (8.5) (8.7). Это равенство может нарушиться только в точках разрыва функции и на концах отрезка .
В силу периодичности функции и суммы ряда Фурье может быть получено указанное разложение во всей области определения функции.
Если функция с периодом на отрезке удовлетворяет условиям теоремы Дирихле, то для нее имеет место разложение (8.4), где коэффициенты вычисляются по формулам (8.5) (8.7).
Надо отметить, что условиям теоремы Дирихле удовлетворяют большинство функций, встречающихся в математике и ее приложениях. Существуют функции, не удовлетворяющие условиям теоремы Дирихле, но при этом их можно разложить в ряд Фурье, т.е. теорема Дирихле дает лишь достаточное условие разложимости, но не необходимое.
8.4. Разложение в ряд Фурье четных и нечетных функций
Если разлагаемая на отрезке в ряд Фурье функция является четной или нечетной, то это отражается на формулах коэффициентов Фурье (вычисление их упрощается) и на виде самого ряда (он становится так называемым неполным).
Допустим, что разлагаемая в ряд Фурье
функция
четная.
Тогда функции
будут нечетными и все коэффициенты
,
как интегралы от нечетных функций по
интервалу
,
симметричному относительно начала
координат, окажутся равными нулю. Функции
будут четными.
Итак, если функция четная, то ряд Фурье имеет вид (состоит из одних косинусов):
,
(8.8)
где
,
,
.
Допустим, что разлагаемая в ряд Фурье функция нечетная. Тогда функции будут нечетными и все коэффициенты , как интегралы от нечетных функций по интервалу , симметричному относительно начала координат, окажутся равными нулю. Функции будут четными.
Итак, если функция нечетная, то ряд Фурье имеет вид (состоит из одних синусов):
,
(8.9)
где
,
.
Ряды (8.8) и (8.9) называются неполными тригонометрическими рядами, или рядами по косинусам и по синусам соответственно.