
- •1.1. Двойной интеграл
- •2. Геометрический и физический смысл двойного интеграла. Основные свойства двойного интеграла.
- •4 Вычисление двойного интеграла в полярных координатах
- •5 Приложения двойного интеграла Объем тела
- •Площадь плоской фигуры
- •6 Тройной интеграл
- •1) Разбиваем область на «элементарных областей» .
- •3) Возьмем произвольную точку .
- •5) Составляем интегральную сумму
- •Основные свойства тройного интеграла
- •7 Замена переменной в тройном интеграле. Вычисление тройного интеграла в цилиндрических и сферических координатах.
- •8. Некоторые приложения тройного интеграла в геометрии и физике
- •9. Криволинейный интеграл I рода. Основные свойства кри-I.
- •Основные свойства кри-I
- •10. Вычисление криволинейного интеграла I рода: явное представление кривой, параметрическое представление кривой, полярное представление кривой.
- •2.2. Вычисления криволинейного интеграла I рода
- •11. Некоторые приложения кри-I рода в геометрии и физике.
- •Площадь цилиндрической поверхности
- •12. Криволинейный интеграл II рода. Основные свойства кри-II.
- •Криволинейный интеграл II рода (кри-II)
- •Основные свойства кри-II
- •13. Вычисление кри-II: явное представление кривой, параметрическое представление кривой. Некоторые приложения кри-II.
- •2.5. Вычисления криволинейного интеграла II рода
- •Явное представление кривой
- •Параметрическое представление кривой
- •2.6. Некоторые приложения криволинейного интеграла II рода Площадь плоской фигуры
- •Работа переменной силы
- •14. Формула Остроградского – Грина.
- •15.Поверхностный интеграл I рода. Основные свойства поверхностного интеграла I рода. Вычисление поверхностного интеграла I рода.
- •3.2. Вычисление поверхностного интеграла I рода
- •16.Поверхностный интеграл II рода. Свойства поверхностного интеграла II рода.
- •3.3. Поверхностный интеграл II рода
- •17.Вычисление поверхностного интеграла II рода. Формула Остроградского - Гаусса для вычисления поверхностного интеграла II рода.
- •3.4. Вычисление поверхностного интеграла II рода
- •I способ
- •II способ
- •II способ
- •III способ
- •18. Скалярное поле. Поверхность и линии уровня. Производная по направлению. Градиент.
- •Производная по направлению
- •Градиент
- •19.Векторное поле. Векторные (силовые) линии. Векторная трубка.
- •20. Поток векторного поля через поверхность. Формула вычисления потока векторного поля. Источник и сток. Формула Остроградского – Гаусса для вычисления потока.
- •4.3. Поток векторного поля через поверхность
- •21.Дивергенция поля. Некоторые свойства дивергенции. Физический смысл дивергенции.
- •22. Циркуляция поля. Физический смысл циркуляции поля.
- •4.5. Циркуляция поля
- •23. Ротор поля. Некоторые свойства ротора. Формула Стокса.
- •4.6. Ротор поля. Формула Стокса
- •24. Векторные дифференциальные операции первого порядка.
- •Векторные дифференциальные операции первого и второго порядка
- •25. Векторные дифференциальные операции второго порядка.
- •26.Классификация векторных полей: определения соленоидального, потенциального и гармонического векторного поля.
- •4.8. Классификация векторных полей Соленоидальное векторное поле
- •Потенциальное векторное поле
- •Гармоническое векторное поле
- •27.Числовой ряд. -ая частичная сумма ряда. Сходимость и расходимость ряда. Некоторые свойства рядов. -ый остаток ряда.
- •5.1. Основные понятия
- •28. Сформулировать и доказать необходимый признак сходимости ряда. Достаточный признак расходимости ряда. Гармонический ряд.
- •5.2. Необходимый признак сходимости ряда
- •5.3. Достаточные признаки сходимости ряда
- •29. Признаки сравнения рядов. Признак Даламбера Признаки сравнения рядов.
- •Признак Даламбера
- •30. Радикальный признак Коши. Интегральный признак Коши. Ряд Дирихле.
- •Интегральный признак Коши
- •31. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •6.1. Знакочередующиеся ряды. Признак Лейбница
- •Абсолютная и условная сходимости рядов
- •32. Функциональный ряд. Точка сходимости. Область сходимости функциональног
- •7.1. Функциональные ряды
- •33. Степенной ряд. Сформулировать и доказать теорему Абеля.
- •34. Интервал и радиус сходимости степенного ряда. Интервал и радиус сходимости
- •Свойства степенных рядов
- •35. Ряды Тейлора и Маклорена. Разложение функций в степенной ряд.
- •Разложение функций в степенной ряд
- •36. Некоторые приложения степенных рядов.
- •Некоторые приложения степенных рядов
- •Вычисление значений функции
- •2. Вычисление интегралов
- •3. Приближенное решение дифференциальных уравнений
- •Способ последовательного дифференцирования
- •Способ неопределенных коэффициентов
- •37. Тригонометрический ряд. Формулы коэффициентов ряда Фурье
- •8.1. Периодические функции. Периодические процессы
- •Тригонометрический ряд Фурье
- •38.Разложение в ряд Фурье -периодических функций. Теорема Дирихле. Разложение в ряд Фурье четных и нечетных функций.
- •8.3. Разложение в ряд Фурье -периодических функций
- •8.4. Разложение в ряд Фурье четных и нечетных функций
- •39. Разложение в ряд Фурье функций произвольного периода.
- •40Уравнение колебаний струны.
- •Уравнение колебаний струны
- •Уравнение теплопроводности.
25. Векторные дифференциальные операции второго порядка.
Основными дифференциальными операциями (действиями) над скалярным полем и векторным полем являются: градиент, дивергенция, ротор. Эти действия называются векторными операциями первого порядка (в них участвуют только производные первого порядка).
Векторные операции – нахождение градиента, дивергенции, ротора, удобно описывать с помощью дифференциального оператора, который обозначается символом (читается «набла») и называется оператором Гамильтона:
.
Он приобретает смысл лишь в комбинации со скалярными или векторными функциями. Символическое «умножение» вектора на скаляр или вектор производится по обычным правилам векторной алгебры, а «умножение» символов на величины , , , понимают как взятие соответствующей частной производной от этих величин.
Выразим основные дифференциальные операции с помощью оператора Гамильтона:
.
.
.
Оператор Гамильтона применяется для записи и других операций и для вывода различных формул в теории поля. При действии с ними надо пользоваться правилами векторной алгебры и правилами дифференцирования.
После применения оператора Гамильтона к скалярному или векторному полю получается новое поле, к которому можно снова применит этот оператор. В результате получаются дифференциальные операции второго порядка. Можно убедиться, что имеется лишь пять дифференциальных операций второго порядка: , , , , . Понятно, что, например, операция не имеет смысла, так как есть скаляр.
Дифференциальный оператор
также называется оператором Гамильтона.
Запишем основные дифференциальные операции второго порядка, используя оператор Гамильтона:
.
Таким образом, получаем дифференциальное уравнение
,
которое называется дифференциальным уравнением Лапласа. Это уравнение играет важную роль в различных разделах математической физике. Решениями уравнения Лапласа являются так называемые гармонические функции.
, так как векторное произведение двух одинаковых векторных полей равно нулевому вектору. Это означает, что поле градиента есть поле безвихревое.
.
, так как смешанное произведение трех векторов, из которых два одинаковых, равно нулю.
.
26.Классификация векторных полей: определения соленоидального, потенциального и гармонического векторного поля.
4.8. Классификация векторных полей Соленоидальное векторное поле
Определение 4.12. Векторное поле называется соленоидальным или трубчатым в области , если в каждой точке этой области
.
Примерами соленоидальных полей являются: поле линейных скоростей вращающегося твердого тела; магнитное поле, создаваемое прямолинейным проводником, вдоль которого течет электрический ток, и другие.
Приведем некоторые свойства соленоидального поля:
В соленоидальном поле поток вектора через любую замкнутую поверхность равен нулю. Соленоидальное поле не имеет источников и стоков.
Соленоидальное поле является полем ротора некоторого векторного поля, т.е. если , то существует такое поле
, что
. Вектор называется векторным потенциалом поля .
Так как
,
то поле ротора любого векторного поля
является соленоидальным.
3. В соленоидальном поле поток вектора через поперечное сечение векторной трубки сохраняет постоянное значение, называемое интенсивностью трубки.