
- •1.1. Двойной интеграл
- •2. Геометрический и физический смысл двойного интеграла. Основные свойства двойного интеграла.
- •4 Вычисление двойного интеграла в полярных координатах
- •5 Приложения двойного интеграла Объем тела
- •Площадь плоской фигуры
- •6 Тройной интеграл
- •1) Разбиваем область на «элементарных областей» .
- •3) Возьмем произвольную точку .
- •5) Составляем интегральную сумму
- •Основные свойства тройного интеграла
- •7 Замена переменной в тройном интеграле. Вычисление тройного интеграла в цилиндрических и сферических координатах.
- •8. Некоторые приложения тройного интеграла в геометрии и физике
- •9. Криволинейный интеграл I рода. Основные свойства кри-I.
- •Основные свойства кри-I
- •10. Вычисление криволинейного интеграла I рода: явное представление кривой, параметрическое представление кривой, полярное представление кривой.
- •2.2. Вычисления криволинейного интеграла I рода
- •11. Некоторые приложения кри-I рода в геометрии и физике.
- •Площадь цилиндрической поверхности
- •12. Криволинейный интеграл II рода. Основные свойства кри-II.
- •Криволинейный интеграл II рода (кри-II)
- •Основные свойства кри-II
- •13. Вычисление кри-II: явное представление кривой, параметрическое представление кривой. Некоторые приложения кри-II.
- •2.5. Вычисления криволинейного интеграла II рода
- •Явное представление кривой
- •Параметрическое представление кривой
- •2.6. Некоторые приложения криволинейного интеграла II рода Площадь плоской фигуры
- •Работа переменной силы
- •14. Формула Остроградского – Грина.
- •15.Поверхностный интеграл I рода. Основные свойства поверхностного интеграла I рода. Вычисление поверхностного интеграла I рода.
- •3.2. Вычисление поверхностного интеграла I рода
- •16.Поверхностный интеграл II рода. Свойства поверхностного интеграла II рода.
- •3.3. Поверхностный интеграл II рода
- •17.Вычисление поверхностного интеграла II рода. Формула Остроградского - Гаусса для вычисления поверхностного интеграла II рода.
- •3.4. Вычисление поверхностного интеграла II рода
- •I способ
- •II способ
- •II способ
- •III способ
- •18. Скалярное поле. Поверхность и линии уровня. Производная по направлению. Градиент.
- •Производная по направлению
- •Градиент
- •19.Векторное поле. Векторные (силовые) линии. Векторная трубка.
- •20. Поток векторного поля через поверхность. Формула вычисления потока векторного поля. Источник и сток. Формула Остроградского – Гаусса для вычисления потока.
- •4.3. Поток векторного поля через поверхность
- •21.Дивергенция поля. Некоторые свойства дивергенции. Физический смысл дивергенции.
- •22. Циркуляция поля. Физический смысл циркуляции поля.
- •4.5. Циркуляция поля
- •23. Ротор поля. Некоторые свойства ротора. Формула Стокса.
- •4.6. Ротор поля. Формула Стокса
- •24. Векторные дифференциальные операции первого порядка.
- •Векторные дифференциальные операции первого и второго порядка
- •25. Векторные дифференциальные операции второго порядка.
- •26.Классификация векторных полей: определения соленоидального, потенциального и гармонического векторного поля.
- •4.8. Классификация векторных полей Соленоидальное векторное поле
- •Потенциальное векторное поле
- •Гармоническое векторное поле
- •27.Числовой ряд. -ая частичная сумма ряда. Сходимость и расходимость ряда. Некоторые свойства рядов. -ый остаток ряда.
- •5.1. Основные понятия
- •28. Сформулировать и доказать необходимый признак сходимости ряда. Достаточный признак расходимости ряда. Гармонический ряд.
- •5.2. Необходимый признак сходимости ряда
- •5.3. Достаточные признаки сходимости ряда
- •29. Признаки сравнения рядов. Признак Даламбера Признаки сравнения рядов.
- •Признак Даламбера
- •30. Радикальный признак Коши. Интегральный признак Коши. Ряд Дирихле.
- •Интегральный признак Коши
- •31. Знакочередующиеся ряды. Признак Лейбница. Абсолютная и условная сходимости рядов.
- •6.1. Знакочередующиеся ряды. Признак Лейбница
- •Абсолютная и условная сходимости рядов
- •32. Функциональный ряд. Точка сходимости. Область сходимости функциональног
- •7.1. Функциональные ряды
- •33. Степенной ряд. Сформулировать и доказать теорему Абеля.
- •34. Интервал и радиус сходимости степенного ряда. Интервал и радиус сходимости
- •Свойства степенных рядов
- •35. Ряды Тейлора и Маклорена. Разложение функций в степенной ряд.
- •Разложение функций в степенной ряд
- •36. Некоторые приложения степенных рядов.
- •Некоторые приложения степенных рядов
- •Вычисление значений функции
- •2. Вычисление интегралов
- •3. Приближенное решение дифференциальных уравнений
- •Способ последовательного дифференцирования
- •Способ неопределенных коэффициентов
- •37. Тригонометрический ряд. Формулы коэффициентов ряда Фурье
- •8.1. Периодические функции. Периодические процессы
- •Тригонометрический ряд Фурье
- •38.Разложение в ряд Фурье -периодических функций. Теорема Дирихле. Разложение в ряд Фурье четных и нечетных функций.
- •8.3. Разложение в ряд Фурье -периодических функций
- •8.4. Разложение в ряд Фурье четных и нечетных функций
- •39. Разложение в ряд Фурье функций произвольного периода.
- •40Уравнение колебаний струны.
- •Уравнение колебаний струны
- •Уравнение теплопроводности.
21.Дивергенция поля. Некоторые свойства дивергенции. Физический смысл дивергенции.
Важной характеристикой векторного поля является дивергенция, которая характеризует распределение и интенсивность источников и стоков поля.
Определение 4.9. Дивергенцией (или расходимостью) векторного поля
в
точке
,
обозначаемой символом
,
называется величина, равная сумме
частных производных, вычисленных в
точке
т.е.
.
(4.9)
Отметим некоторые свойства дивергенции:
Если постоянный вектор, то
.
, где .
, т.е. дивергенция суммы двух векторных функций равна сумме дивергенции слагаемых.
Если
скалярная функция, а вектор, то
.
Сравнивая формулы (4.8) и (4.9) видим, что формулу Остроградского – Гаусса можно записать иначе:
.
(4.10)
Формула (4.10) означает: поток векторного поля через замкнутую поверхность (в направлении внешней нормали) равен тройному интегралу от дивергенции этого поля по объему , ограниченному данной поверхностью.
Как видно из определения, дивергенция векторного поля в точке является скалярной величиной. Она образует скалярное поле в данном векторном поле.
Исходя из физического смысла стационарного
потока (обычно считают, что
есть поле скоростей фиктивного
стационарного потока несжимаемой
жидкости), можно сказать, что: при
точка
представляет собой источник, откуда
жидкость вытекает; при
точка
представляет собой сток, поглощающий
жидкость. В этом состоит физический
смысл дивергенции. Если в объеме
,
ограниченном замкнутой поверхностью
нет ни источников, ни стоков, то
.
Пример 4.6. Вычислить дивергенцию векторного поля
в
точке
.
Решение. Согласно формуле (4.9) получаем
.
В точке
имеем
,
т.е. точка
является источником поля.
22. Циркуляция поля. Физический смысл циркуляции поля.
4.5. Циркуляция поля
Пусть векторное поле образовано вектором
.
Возьмем в этом поле некоторую замкнутую
кривую
и выберем на ней определенное направление.
Обозначим через
вектор, имеющий направление касательной
к линии и по модулю равный дифференциалу
длины дуги, т.е.
,
а
.
Определение 4.10. Циркуляцией вектора вдоль замкнутого контура называется криволинейный интеграл по этому контуру от скалярного произведения вектора
на вектор , касательной к контуру, т.е.
.
(4.11)
Циркуляцию вектора можно находить по другой формуле
.
(4.12)
Циркуляция
,
имеет простой физический смысл:
если кривая
расположена в силовом поле, то циркуляция
– это работа силы
поля при перемещении материальной точки
вдоль
.Отметим,
что вдоль замкнутых векторных линий
циркуляция отлична от нуля, потому что
в каждой точке векторной линии скалярное
произведение
сохраняет знак: положительный, если
направление вектора
совпадает с направлением обхода векторной
линии; отрицательный – в противном
случае.
Пример 4.7. Вычислить циркуляцию векторного поля
вдоль
периметра треугольника с вершинами
,
,
.
Р
.
На
отрезке
.
Следовательно,
.
На
отрезке
.
→
На отрезке
.
→
.
Тогда
.