
- •Е. Ю. Тюменцева химия Методические указания к выполнению контрольных работ
- •Содержание
- •6.4. Растворы. Свойства растворов. Способы выражения
- •6.5. Ионные уравнения. Гидролиз солей. 38
- •6.9. Комплексные соединения 43
- •Введение
- •Организация учебного процесса студента заочной формы обучения
- •Программа курса «Химия»
- •Раздел 1. Основные химические понятия. Стехиометрические законы и классы неорганических соединений
- •Тема 1.1. Введение. Место химии в системе наук и связь с профессиональными функциями. Основные химические понятия и стехиометрические законы.
- •Раздел 2. Основные закономерности протекания химических реакций
- •Тема 2.1. Элементы термодинамики и закономерности протекания химических реакций.
- •Тема 2.2. Химическая кинетика. Химическое равновесие.
- •Раздел 3. Растворы и их свойства
- •Тема 3.1. Растворы – общие свойства.
- •Раздел 4. Окислительно-восстановительные процессы. Их применение
- •Тема 4.1. Окислительно–восстановительные процессы.
- •Тема 4.2. Электрохимические процессы. Гальванические элементы. Коррозия.
- •Раздел 5. Строение атома. Периодическая система д. И. Менделеева. Химическая связь
- •Тема 5.1. Строение атома и периодическая система д. И. Менделеева.
- •Тема 5.2. Типы химических связей.
- •Тема 5.3. Комплексные соединения.
- •Раздел 7. Теоретические представления в органической химии
- •Тема 7.1. Введение. Теоретические представления в органической химии.
- •Раздел 8. Углеводороды. Галогенопроизводные
- •Тема 8.1. Ациклические углеводороды.
- •Тема 8.2. Ароматические углеводороды.
- •Тема 8.3. Галогенопроизводные.
- •Раздел 9. Кислородосодержащие органические соединения
- •Тема 9.1. Спирты. Фенолы.
- •Тема 9.2. Карбонильные соединения (альдегиды, кетоны, карбоновые кислоты и их производные).
- •Раздел 10. Углеводы
- •Раздел 11. Азотсодержащие органические соединения
- •Тема 11.1 Амины. Аминокислоты.
- •Раздел 12. Высокомолекулярные соединения
- •Тема 12.1. Полимеры, их особенности.
- •Тема 12.2. Белки.
- •3. Выполнение контрольной работы
- •4. Примеры решения задач по всем темам курса
- •4.1. Примеры решения задач на стехиометрические законы
- •4.1.1. Закон эквивалентов
- •28 Г металла эквивалентны 11,2 л н2
- •4.2. Основные классы неорганических соединений
- •4.3. Энергетика химических процессов
- •4.4. Кинетика химических процессов
- •4.5. Растворы. Свойства растворов. Способы выражения концентрации растворов
- •4.6. Ионные уравнения. Гидролиз солей
- •4.7. Окислительно-восстановительные реакции
- •4.8. Электрохимические процессы
- •4.9. Строение атома. Электронные формулы элементов. Химическая связь
- •4.10. Комплексные соединения
- •4.11. Примеры задач по органической химии и их решение
- •5. Контрольные задания
- •5.1. Варианты контрольной работы
- •Вопросы контрольной работы
- •6.1. Основные законы стехиометрии
- •6.2. Основные классы неорганических соединений
- •6.3. Основные закономерности протекания химических реакций
- •6.4. Растворы. Свойства растворов. Способы выражения концентрации растворов
- •Ионные уравнения. Гидролиз солей
- •Окислительно-восстановительные реакции
- •Электрохимические процессы
- •Строение атома. Электронные формулы элементов. Химическая связь
- •Комплексные соединения
- •Химические свойства металлов и неметаллов
- •6.11. Задания по органической химии
- •Библиографический список
- •Тюменцева Евгения Юрьевна химия
- •644099, Г. Омск, ул. Красногвардейская, 9
4.7. Окислительно-восстановительные реакции
Пример 1. Исходя из степени окисления (n) азота, серы и марганца в соединениях NH3, HNO2, HNO3, H2S, H2SO3, H2SO4, MnO2, KMnO4 определить, какие из них могут быть только восстановителями, только окислителями и какие проявляют как окислительные, так и восстановительные свойства.
Решение: степень окисления n(N) в указанных соединениях соответственно равна: −3 (низшая), +3 (промежуточная), +5 (высшая); n(S) соответственно равна: −2 (низшая), +4 (промежуточная), +6 (высшая); n(Mn) соответственно равна: +4 (промежуточная), +7 (высшая). Отсюда: NH3 и H2S – только восстановители; HNO3, H2SO4, KMnO4 – только окислители; HNO2, H2SO3, MnO2 – окислители и восстановители.
Пример 2. Могут ли происходить окислительно-восстановительные реакции между следующими веществами: а) H2S и HI; б) H2S и H2SO3; в) H2SO3 и HCIO4?
Решение:
а) степень окисления в H2S n(S) = −2; в HI n(I) = −1. Так как и сера и йод находятся в своей низшей степени окисления, то оба взятые вещества проявляют только восстановительные свойства и взаимодействовать друг с другом не могут;
б) в H2S n(S) = − 2 (низшая); в H2SO3 n(S) = +4 (промежуточная). Следовательно, взаимодействие этих веществ возможно, причем H2SO3 является окислителем;
в) в H2SO3 n(S) = +4 (промежуточная); в HCIO4 n(CI) = +7 (высшая). Взятые вещества будут взаимодействовать. H2SO3 в этом случае будет проявлять окислительно-восстановительные свойства.
Пример 3. Составить уравнения окислительно-восстановительной реакции, идущей по схеме:
+7 +3 +2 +5
KMnO4 + H3PO3 + H2SO4 = MnSO4 + H3PO4 + K2SO4 + H2O
Решение: если в условии задачи даны как исходные вещества, так и продукты их взаимодействия, то написание уравнения реакции сводится, как правило, к нахождению и расстановке коэффициентов. Коэффициенты определяют методом электронного баланса с помощью электронных уравнений. Вычисляем, как изменяют свою степень окисления восстановитель и окислитель, и отражаем это в электронных уравнениях:
в
осстановитель 5 Р3+
- 2е- = Р5+ процесс окисления
окислитель 2 Mn7+ + 5е- = Mn2+ процесс восстановления
Пример 4. Расставить коэффициенты в следующем уравнении:
Н2AsO3 + KMnO4 + H2SO4 = H3AsO4 + MnSO4 + K2SO4 + H2O
Решение: ион AIO33- окисляется в ион AIO43-. Недостающий кислород берется из воды, в результате чего образуется избыток ионов Н+:
AsO33- + H2O = AsO43- + 2H+
Так как сумма зарядов в левой и правой части должны равняться друг другу, то из левой части надо отнять 2е:
AsO33- + Н2О – 2е = AsO43- + 2Н+ (1)
Соответственно для процесса восстановления:
MnO4- + 8H+ + 5e = Mn2+ + 4H2O (2)
Умножаем члены первого уравнения на 5, а второго на 2 и, складывая их, получаем ионное уравнение:
5 AsO33- + 5H2O + 2MnO4- + 16H+ = 5 AsO43- + OH+ + 2Mn2+ + 8H2O
От ионного уравнения легко перейти к молекулярному:
5H3AsO3 + 2HMnO4 + 3H2SO4 = 5H3AsO4 + 2MnO4 + K2SO4 + 3H2O