
- •1.История развития дисциплины.
- •2.Жидкость. Классиф. Силы, действующ н ажидкость.
- •3.Механич хр-ки жидкости. (сжимаемость, вязкость, поверхн натяжение, темпер расшир, капилярность, испаряемость, растворимость газов).
- •4.Гидрастотическое давление. 2 осн св-ва с доказательством.
- •5.Гидростатич давл: атм, избыт, выкуометр, абсолют.
- •7.Приборы, прим для измерен давления.(атмосфер, избыт, вакуум)
- •9.Определение силы гидростатич давл на плоскую стенку, располож под углом к гаризнтали. Центр давления. Положение центра давл в случ прямоуг площ, верх кромка кот лежит на уровне свобод пов-ти.
- •10.Определение силы давл на криволинейную пов-ть. Эксыентриситет. Обьем тела давления.
- •12.Виды движения жидкости. Элементы потока жидкости. Понятие расхода жидкости. Определение скорости осреднённой по живому сечению.
- •13.Уравнение неразрывности потока. Вывод, прим для реш задач.
- •15.Геометрический смысл ур-я Бернулли. Энергетический смысл ур-я Бернулли. Полный напор. Напорная и пьезометрич линии.
- •16.Гидравлические элементы живого сечения. Два режима движения жидкости (ламинар, турбулент).
- •17.Опыты Рейнольдса. Критически ечисла Рейнольдса. Определение числа Рейнольдса.
- •18.Потери напора. Определение потерь напора по длине при ламинарном режиме движения. Вывод ур-я Пуазейля. З-н Пуазейля.
- •20.Определение коэф Дарси в случ начал уч ламинар движ.
- •21. Определение коэф Дарси в случ движ с теплообменом.
- •23.Определение потерь напора по длине в случ больших перепадов давл.
- •24.Определ коэф Дарси при турбул режиме движ. Коэф эквивал шераховатости. Гидравлич гладкие и шераховат трубы.
- •26.Графики Никурадзе. Определение Дарси опытным путем.
- •27.Графики Мурина. Определение Дарси опытным путем
- •28.Виды местных сопротивлений. Определение потерь напора на местные сопротивл. Вывод общего ур-я Вейсбаха.
- •В незапное расширение.
- •Постепенное расширение потока
- •Постепенное сужение потока
- •29.Определение коэффиц местного сопротивл.
- •30.Явление кавитации. Критич число кавитации.
- •31. Уравнение Бернулли для потока реальной жидкости
- •32. Ду движущейся идеальной жидкости (ур. Эйлера)
- •3 3.Определение скорости и расхода при истеч жидкости через малые отверстия в тонкой стенке при постоян расходе. Коэф сжатия скорости и расхода. Уравнение Торичелли.
- •34.Истечение жидкости под уровень через малое отверстие в тонкой стенке.
- •35.Определение времени опорожнения сосуда.
- •36.Вывод ур-я траетории струи. Определение дальности отлёта струи.
- •37.Истечение жидкости через насадки. Устройство и принцип действия. Насадка Вентури, Борда, расходящ и сход внеш насадок.
- •38.Коэф сжатия, скорости и расхода насадков. Ур-е для опред.
- •39.Явление гидростатич удара. Скорость распр ударной волны.
- •40.Определение превышения давл при гидроударе. Фаза и период гидроудара.
- •41.Прямой и непрямой гидроудар.
- •4 2.Устройство и принцип дествия гидротарана.
- •43.Способы борьбы с гидроударом.
- •44.Гидравлический расчёт трубопроводов. Трубопроводы простые и сложные, короткие и длинные.
- •45. Построение трубопроводной характеристики. Статический напор. Потребный напор
- •46. Построение трубопроводной характеристики при парал и посл соедин корот трубопроводов
- •47.Расчёт длинных трубопроводов.Определение магистрали.Понятие коэф-та расхода.Построение трубопроводной характеристики в случае тупикового трубопровода.
- •48.Выбор насоса, работающего на трубопроводную систему.Построение трубопроводной характеристики.Определение потребного напора.Поле насосов.Хар-ки насоса.Определение рабочей точки насоса.
- •49.Основы теории подобия. Критерии подобия.
- •50.Классификация грунтовых вод. Напорное и безнапорное, равномер и неравномер движ грунтовых вод.
- •51.Скорость фильтрации в случ равномер движ. Ф-ла Дарси.
- •52.Способы определ коэф Дарси в случ движ грунт вод. Лабораторный, по эмперич ф-лам, полевой.
- •53.Неравномер напорное движение грунтовых вод. Уравнение Дюпели.
- •54.Фильтрация жидкости под основанием плотины. Построение гидродинамич сетки.
- •55.Метод электродинамических аналогий.
Постепенное расширение потока
П
остепенное
расширение трубы называется диффузором.
Постепенное сужение потока
Такое
сопротивление представляет собой
коническую сходящуюся т
рубку
– конфузор.
Внезапный поворот трубы
Внезапный поворот трубы, или колено без закругления ( рис 8.4), обачно вызывает значительные потери энергии, т.к. в нем происходит отрыв потока и выхреобразование, причем эти потери тем больше, чем больше угол Ј.
Плавный поворот трубы
Плавный поворот трубы или закругленное колено (рис 8.5), называется также отводом. Плавность поворота значительно уменьшает интенсивность выхреобразования, а, следовательно, и потери энергии.
29.Определение коэффиц местного сопротивл.
1. При внезапном расширении трубы:
где S1 и S2 — площади поперечного сечения трубы, соответственно перед расширением и после него.
2. При внезапном сужении трубы коэффициент Дарси определяется по формуле:
где S1 и S2 — площади поперечного сечения трубы, соответственно, перед сужением и после него.
3. При постепенном сужении трубы (конфузор):
где
— степень сужения; λT — коэффициент
потерь на трение по длине при турбулентном
режиме.
4. При резком (без закругления) повороте трубы (колено) коэффициент Дарси определяется по графическим зависимостям
30.Явление кавитации. Критич число кавитации.
Кавита́ция— образование в жидкости полостей (кавитационных пузырьков, или каверн), заполненных паром. Кавитация возникает в результате местного понижения давления в жидкости, которое может происходить либо при увеличении её скорости (гидродинамическая кавитация), либо при прохождении акустической волны большой интенсивности во время полупериода разрежения (акустическая кавитация), существуют и другие причины возникновения эффекта. Перемещаясь с потоком в область с более высоким давлением или во время полупериода сжатия, кавитационный пузырёк захлопывается, излучая при этом ударную волну.
Кавитация разрушает поверхность гребных винтов, гидротурбин, акустических излучателей и др.
К
авитационное
течение характеризуют безразмерным
параметром (числом кавитации):
, где
P — гидростатическое давление набегающего потока, Па;
Ps — давление насыщенных паров жидкости при определенной температуре окружающей среды, Па;
ρ — плотность среды, кг/м³;
V — скорость потока на входе в систему, м/с.
Известно, что кавитация возникает при достижении потоком граничной скорости V = Vc, когда давление в потоке становится равным давлению парообразования (насыщенных паров). Этой скорости соответствует граничное значение критерия кавитации.
В зависимости от величины Χ можно различать четыре вида потоков:
докавитационный — сплошной (однофазный) поток при Χ > 1,
кавитационный
— (двухфазный) поток при ,
пленочный — с устойчивым отделением кавитационной полости от остального сплошного потока (пленочная кавитация) при Χ < 1,
суперкавитационный
— при
.