
- •Теория вероятностей и математическая статистика
- •1 Краткая историческая справка
- •2 Основные комбинаторные объекты (типы выборок). Формулы и правила расчёта
- •2.1 Примеры решения задач
- •3 Случайные события. Классическое определение вероятности
- •3.1 Случайные события
- •3.2 Классическое определение вероятности
- •3.3 Относительная частота события
- •4 Статистическая и геометрическая вероятности
- •5 Вероятность сложных событий. Противоположные события. Условная вероятность
- •5.1 Алгебра случайных событий
- •5.2 Теорема сложения вероятностей несовместных событий
- •5.3 Противоположные события
- •5.4 Теорема умножения вероятностей
- •6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
- •6.1 Независимые события
- •6.2 Вероятность появления хотя бы одного события
- •6.3 Формула полной вероятности
- •6.4 Формулы Бейеса
- •7 Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа
- •7.1 Формула Бернулли
- •7.2 Локальная теорема Лапласа
- •7.3 Интегральная теорема Лапласа
- •8 Понятие дсв. Распределение дсв. Функции от дсв
- •8.1 Случайная величина
- •8.2 Дискретная случайная величина (дсв)
- •8.3 Независимые случайные величины
- •8.4 Функция распределения случайной величины
- •9 Характеристики дсв и их свойства. Математическое ожидание, дисперсия, ско
- •9.1 Математическое ожидание дискретной случайной величины
- •9.2 Свойства математического ожидания
- •9.3 Дисперсия дискретной случайной величины
- •9.4 Свойства дисперсии
- •9.5 Среднее квадратическое отклонение дискретной случайной величины
- •10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
- •10.1 Биноминальное распределение
- •10.2 Распределение Пуассона
- •10.3 Геометрическое распределение вероятности
- •11 Понятие нсв. Равномерно распределенная нсв
- •11.1 Непрерывная случайная величина (нсв)
- •11.2 Равномерно распределённая нсв
- •12 Функция плотности нсв. Характеристики нсв
- •12.1 Функция плотности нсв
- •12.2 Свойства плотности распределения
- •12.3 Числовые характеристики непрерывных случайных величин
- •13 Нормальное распределение. Кривая Гаусса. Правило трёх сигм
- •13.1 Нормальный закон распределения
- •13.2 Функция Лапласа
- •13.3 Правило трёх сигм
- •14 Показательное распределение. Характеристики показательного распределения
- •14.1 Показательное распределение
- •14.2 Характеристики показательного распределения
- •14.3 Показательный закон надежности
- •15 Центральная предельная теорема. Закон больших чисел
- •15.1 Неравенство Чебышева
- •15.2 Теорема Чебышева
- •15.3 Сущность теоремы Чебышева
- •15.4 Теорема Бернулли
- •15.5 Центральная предельная теорема
- •16 Выборочный метод. Полигон и гистограмма. Числовые характеристики выборки
- •16.1 Задачи математической статистики
- •16.2 Генеральная и выборочная совокупности
- •16.3 Повторная и бесповторная выборки
- •16.4 Способы отбора
- •16.5 Статистическое распределение выборки
- •16.6 Эмпирическая функция распределения
- •16.7 Полигон и гистограмма
- •16.8 Характеристики вариационного ряда
- •17 Статистические оценки параметров распределения. Точечная и интервальная оценки
- •17.1 Статистические оценки параметров распределения
- •17.2 Несмещенные, эффективные и состоятельные оценки
- •17.3 Генеральная и выборочная средняя
- •17.4 Генеральная и выборочная дисперсия
- •17.5 Точность оценки, надёжность. Доверительный интервал
- •17.6 Доверительные интервалы для оценки математического ожидания нормального распределения
- •17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •18 Моделирование случайных величин. Моделирование дсв, нсв
- •18.1 Предмет метода Монте-Карло
- •18.2 Случайные числа
- •18.3 Разыгрывание дискретной случайной величины
- •18.4 Разыгрывание противоположных событий
- •18.5 Разыгрывание полной группы событий
- •18.6 Разыгрывание непрерывной случайной величины. Метод обратных функций
- •18.7 Приближённое разыгрывание нормальной случайной величины
5.3 Противоположные события
Противоположными
называется два единственно возможных
события, образующих полную группу. Если
одно из двух противоположных событий
обозначено через
,
то другое принято обозначать
.
Пример 1. Попадание и промах при выстреле по цели – противоположные события. Если - попадание, то - промах.
Пример 2. Из ящика наудачу взята деталь. События «появилась стандартная деталь» и «появилась нестандартная деталь» - противоположные.
Теорема.
Сумма
вероятностей событий
,
образующих полную группу, равна единице:
Теорема.
Сумма
вероятностей противоположных событий
равна единице:
Пример 3. Вероятность того, что день будет ясным, р=0,7. Найти вероятность того, что день будет дождливым.
Решение: События «день ясный» и «день дождливый» - противоположные, поэтому искомая вероятность: q=1-р=1-0,7=0,3.
5.4 Теорема умножения вероятностей
Произведением двух событий А и В называют событие АВ, состоящее в совместном появлении (совмещении) этих событий. Например, если А - деталь годная, В - деталь окрашенная, то АВ - деталь годна и окрашена.
Условной
вероятностью
называют
вероятность события В, вычисленную в
предположении, что событие А уже
наступило.
Пример 1. В урне 3 белых и 3 черных шара. Из урны дважды вынимают по одному шару, не возвращая их обратно. Найти вероятность появления белого шара при втором испытании (событие В), если при первом испытании был извлечен черный шар (событие А).
После
первого испытания в урне осталось 5
шаров, из них 3 белых. Искомая условная
вероятность:
Теорема. Вероятность совместного появления двух событий равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие уже наступило:
Пример 2. У сборщика имеется 3 конусных и 7 эллиптических валиков. Сборщик взял один валик, а затем второй. Найти вероятность того, что первый из взятых валиков - конусный, а второй - эллиптический.
Решение:
Вероятность того, что первый валик
окажется конусным (событие А),
.
Вероятность
того, что второй валик окажется
эллиптическим (событие В), вычисленная
в предположении, что первый валик -
конусный, т. е. условная вероятность
.
По теореме умножения, искомая вероятность
.
6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
6.1 Независимые события
Событие
В называют независимым от события А,
если появление события А не изменяет
вероятности события В, т.е. если условная
вероятность события В равна его
безусловной вероятности:
.
Для независимых событий теорема умножения имеет вид:
,
т. е. вероятность совместного появления
двух независимых событий равна
произведению вероятностей этих событий.
Два события называют независимыми, если вероятность их совмещения равна произведению вероятностей этих событий; в противном случае события называют зависимыми.
На практике о независимости событий заключают по смыслу задачи. Например, вероятности поражения цели каждым из двух орудий не зависят от того, поразило ли цель другое орудие, поэтому события «первое орудие поразило цель» и «второе орудие поразило цель» независимы.
Пример. Найти вероятность совместного поражения цели двумя орудиями, если вероятность поражения цели первым орудием (событие А) равна 0,8, а вторым (событие В) - 0,7.
Решение:
События А и В независимые, поэтому, по
теореме умножения, искомая вероятность
.