
- •Теория вероятностей и математическая статистика
- •1 Краткая историческая справка
- •2 Основные комбинаторные объекты (типы выборок). Формулы и правила расчёта
- •2.1 Примеры решения задач
- •3 Случайные события. Классическое определение вероятности
- •3.1 Случайные события
- •3.2 Классическое определение вероятности
- •3.3 Относительная частота события
- •4 Статистическая и геометрическая вероятности
- •5 Вероятность сложных событий. Противоположные события. Условная вероятность
- •5.1 Алгебра случайных событий
- •5.2 Теорема сложения вероятностей несовместных событий
- •5.3 Противоположные события
- •5.4 Теорема умножения вероятностей
- •6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
- •6.1 Независимые события
- •6.2 Вероятность появления хотя бы одного события
- •6.3 Формула полной вероятности
- •6.4 Формулы Бейеса
- •7 Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа
- •7.1 Формула Бернулли
- •7.2 Локальная теорема Лапласа
- •7.3 Интегральная теорема Лапласа
- •8 Понятие дсв. Распределение дсв. Функции от дсв
- •8.1 Случайная величина
- •8.2 Дискретная случайная величина (дсв)
- •8.3 Независимые случайные величины
- •8.4 Функция распределения случайной величины
- •9 Характеристики дсв и их свойства. Математическое ожидание, дисперсия, ско
- •9.1 Математическое ожидание дискретной случайной величины
- •9.2 Свойства математического ожидания
- •9.3 Дисперсия дискретной случайной величины
- •9.4 Свойства дисперсии
- •9.5 Среднее квадратическое отклонение дискретной случайной величины
- •10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
- •10.1 Биноминальное распределение
- •10.2 Распределение Пуассона
- •10.3 Геометрическое распределение вероятности
- •11 Понятие нсв. Равномерно распределенная нсв
- •11.1 Непрерывная случайная величина (нсв)
- •11.2 Равномерно распределённая нсв
- •12 Функция плотности нсв. Характеристики нсв
- •12.1 Функция плотности нсв
- •12.2 Свойства плотности распределения
- •12.3 Числовые характеристики непрерывных случайных величин
- •13 Нормальное распределение. Кривая Гаусса. Правило трёх сигм
- •13.1 Нормальный закон распределения
- •13.2 Функция Лапласа
- •13.3 Правило трёх сигм
- •14 Показательное распределение. Характеристики показательного распределения
- •14.1 Показательное распределение
- •14.2 Характеристики показательного распределения
- •14.3 Показательный закон надежности
- •15 Центральная предельная теорема. Закон больших чисел
- •15.1 Неравенство Чебышева
- •15.2 Теорема Чебышева
- •15.3 Сущность теоремы Чебышева
- •15.4 Теорема Бернулли
- •15.5 Центральная предельная теорема
- •16 Выборочный метод. Полигон и гистограмма. Числовые характеристики выборки
- •16.1 Задачи математической статистики
- •16.2 Генеральная и выборочная совокупности
- •16.3 Повторная и бесповторная выборки
- •16.4 Способы отбора
- •16.5 Статистическое распределение выборки
- •16.6 Эмпирическая функция распределения
- •16.7 Полигон и гистограмма
- •16.8 Характеристики вариационного ряда
- •17 Статистические оценки параметров распределения. Точечная и интервальная оценки
- •17.1 Статистические оценки параметров распределения
- •17.2 Несмещенные, эффективные и состоятельные оценки
- •17.3 Генеральная и выборочная средняя
- •17.4 Генеральная и выборочная дисперсия
- •17.5 Точность оценки, надёжность. Доверительный интервал
- •17.6 Доверительные интервалы для оценки математического ожидания нормального распределения
- •17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •18 Моделирование случайных величин. Моделирование дсв, нсв
- •18.1 Предмет метода Монте-Карло
- •18.2 Случайные числа
- •18.3 Разыгрывание дискретной случайной величины
- •18.4 Разыгрывание противоположных событий
- •18.5 Разыгрывание полной группы событий
- •18.6 Разыгрывание непрерывной случайной величины. Метод обратных функций
- •18.7 Приближённое разыгрывание нормальной случайной величины
2.1 Примеры решения задач
1.
Вычислить:
.
;
;
.
2.
Решить уравнение:
.
;
;
;
По свойству пропорции получаем:
;
;
;
;
;
;
.
Ответ: 9,10.
3. Задача. В шахматном турнире, где участники встретились между собой один раз, два шахматиста выбыли по болезни, успев сыграть по 3 партии каждый. Сколько шахматистов начали турнир, если было сыграно 84 партии?
Решение:
;
;
;
;
;
;
;
;
.
Ответ: 15 шахматистов начали турнир.
4. Задача. Сколько различных двузначных чисел можно составить из цифр 1, 2, 3, 4, при условии, что в каждом числе нет одинаковых цифр?
Решение:
Нам необходимо составить комбинации
из четырёх элементов по двум элементам
и подсчитать количество таких комбинаций.
Так как порядок при составлении комбинаций
важен, то используем вид комбинаций –
размещения:
.
5. Задача. На собрании членов кооператива присутствуют 15 человек. Сколькими способами из присутствующих можно выбрать:
а) правление кооператива в составе 4 человек;
б) председателя правления, его заместителя и бухгалтера?
Решение:
а) Из 15 человек нужно выбрать 4 человека.
Это можно сделать следующим числом
способов:
.
б)
из 15 человек нужно выбрать не просто 3
человека, но и решить, кто из них на какой
должности окажется. Так как порядок при
составлении комбинаций важен, то:
.
3 Случайные события. Классическое определение вероятности
Наблюдаемые нами события можно подразделить на следующие три вида: достоверные, невозможные, случайные.
Достоверным называют событие, которое обязательно произойдёт, если будет осуществлена определённая совокупность условий S.
Пример: если в сосуде содержится вода при нормальном атмосферном давлении и температуре 20°, то событие «вода в сосуде находится в жидком состоянии» есть достоверное. В этом примере заданные атмосферное давление и температура воды составляют совокупность условий S.
Невозможным называют событие, которое заведомо не произойдёт, если будет осуществлена определённая совокупность условий S.
Пример: событие «вода в сосуде находится в твёрдом состоянии» заведомо не произойдёт, если будет осуществлена совокупность условий предыдущего примера.
Случайным называют событие, которое при осуществлении совокупности условий S может либо произойти, либо не произойти.
Пример: если брошена монета, то она может упасть так, что сверху будет либо герб, либо надпись. Поэтому событие «при бросании монеты выпал герб» - случайное.
Каждое случайное событие, в частности – выпадение герба, есть следствие действия очень многих случайных причин (в нашем примере: сила, с которой брошена монета, форма монеты и многие другие). Невозможно учесть влияние на результат всех этих причин, поскольку число их очень велико и законы их действия неизвестны. Поэтому теория вероятностей не ставит перед собой задачу предсказать, произойдёт единичное событие или нет, - она просто не в силах это сделать.
По-иному обстоит дело, если рассматриваются случайные события, которые могут многократно наблюдаться при осуществлении одних и тех же условий S, т.е. если речь идет о массовых однородных случайных событиях. Оказывается, что достаточно большое число однородных случайных событий, независимо от их конкретной природы, подчиняются определённым закономерностям, а именно – вероятностным закономерностям. Установлением этих закономерностей и занимается теория вероятностей.
Итак, предметом теории вероятностей является изучение вероятностных закономерностей массовых однородных случайных событий.
Знание закономерностей, которым подчиняются массовые случайные события, позволяет предвидеть, как эти события будут протекать. Например, хотя, как было уже сказано, нельзя наперед определить результат одного бросания монеты, но можно предсказать, причём с небольшой погрешностью, число появлений герба, если монета будет брошена достаточно большое число раз. При этом предполагается, конечно, что монета бросается в одних и тех же условиях.