- •Теория вероятностей и математическая статистика
- •1 Краткая историческая справка
- •2 Основные комбинаторные объекты (типы выборок). Формулы и правила расчёта
- •2.1 Примеры решения задач
- •3 Случайные события. Классическое определение вероятности
- •3.1 Случайные события
- •3.2 Классическое определение вероятности
- •3.3 Относительная частота события
- •4 Статистическая и геометрическая вероятности
- •5 Вероятность сложных событий. Противоположные события. Условная вероятность
- •5.1 Алгебра случайных событий
- •5.2 Теорема сложения вероятностей несовместных событий
- •5.3 Противоположные события
- •5.4 Теорема умножения вероятностей
- •6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
- •6.1 Независимые события
- •6.2 Вероятность появления хотя бы одного события
- •6.3 Формула полной вероятности
- •6.4 Формулы Бейеса
- •7 Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа
- •7.1 Формула Бернулли
- •7.2 Локальная теорема Лапласа
- •7.3 Интегральная теорема Лапласа
- •8 Понятие дсв. Распределение дсв. Функции от дсв
- •8.1 Случайная величина
- •8.2 Дискретная случайная величина (дсв)
- •8.3 Независимые случайные величины
- •8.4 Функция распределения случайной величины
- •9 Характеристики дсв и их свойства. Математическое ожидание, дисперсия, ско
- •9.1 Математическое ожидание дискретной случайной величины
- •9.2 Свойства математического ожидания
- •9.3 Дисперсия дискретной случайной величины
- •9.4 Свойства дисперсии
- •9.5 Среднее квадратическое отклонение дискретной случайной величины
- •10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
- •10.1 Биноминальное распределение
- •10.2 Распределение Пуассона
- •10.3 Геометрическое распределение вероятности
- •11 Понятие нсв. Равномерно распределенная нсв
- •11.1 Непрерывная случайная величина (нсв)
- •11.2 Равномерно распределённая нсв
- •12 Функция плотности нсв. Характеристики нсв
- •12.1 Функция плотности нсв
- •12.2 Свойства плотности распределения
- •12.3 Числовые характеристики непрерывных случайных величин
- •13 Нормальное распределение. Кривая Гаусса. Правило трёх сигм
- •13.1 Нормальный закон распределения
- •13.2 Функция Лапласа
- •13.3 Правило трёх сигм
- •14 Показательное распределение. Характеристики показательного распределения
- •14.1 Показательное распределение
- •14.2 Характеристики показательного распределения
- •14.3 Показательный закон надежности
- •15 Центральная предельная теорема. Закон больших чисел
- •15.1 Неравенство Чебышева
- •15.2 Теорема Чебышева
- •15.3 Сущность теоремы Чебышева
- •15.4 Теорема Бернулли
- •15.5 Центральная предельная теорема
- •16 Выборочный метод. Полигон и гистограмма. Числовые характеристики выборки
- •16.1 Задачи математической статистики
- •16.2 Генеральная и выборочная совокупности
- •16.3 Повторная и бесповторная выборки
- •16.4 Способы отбора
- •16.5 Статистическое распределение выборки
- •16.6 Эмпирическая функция распределения
- •16.7 Полигон и гистограмма
- •16.8 Характеристики вариационного ряда
- •17 Статистические оценки параметров распределения. Точечная и интервальная оценки
- •17.1 Статистические оценки параметров распределения
- •17.2 Несмещенные, эффективные и состоятельные оценки
- •17.3 Генеральная и выборочная средняя
- •17.4 Генеральная и выборочная дисперсия
- •17.5 Точность оценки, надёжность. Доверительный интервал
- •17.6 Доверительные интервалы для оценки математического ожидания нормального распределения
- •17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •18 Моделирование случайных величин. Моделирование дсв, нсв
- •18.1 Предмет метода Монте-Карло
- •18.2 Случайные числа
- •18.3 Разыгрывание дискретной случайной величины
- •18.4 Разыгрывание противоположных событий
- •18.5 Разыгрывание полной группы событий
- •18.6 Разыгрывание непрерывной случайной величины. Метод обратных функций
- •18.7 Приближённое разыгрывание нормальной случайной величины
17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
Пусть количественный признак X генеральной совокупности распределен нормально. Требуется оценить неизвестное генеральное среднее квадратическое отклонение по «исправленному» выборочному среднему квадратическому отклонению s. Доверительные интервалы, покрывающие параметр с заданной надежностью таковы:
,
если q<1.
,
если q>1.
Для отыскания параметра q пользуются таблицей приложения 4.
Пример 1. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=25 найдено «исправленное» среднее квадратическое отклонение s=0,8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение с надежностью 0,95.
Решение. По таблице приложения 4 по данным =0,95 и n=25 найдем q=0,32. Т.к. q<1, то для вычисления доверительного интервала применяем первую формулу
Искомый доверительный интервал таков:
0,8 (1-0,32)< <0,8 (1+0,32), или 0,544< <1,056.
18 Моделирование случайных величин. Моделирование дсв, нсв
18.1 Предмет метода Монте-Карло
Датой рождения метода Монте-Карло принято считать 1949 г., когда американские ученые Н. Метрополис и С. Улам опубликовали статью «Метод Монте-Карло», в которой систематически его изложили. Название метода связано с названием города Монте-Карло, где в игорных домах (казино) играют в рулетку - одно из простейших устройств для получения случайных чисел, на использовании которых основан этот метод.
ЭВМ позволяют легко получать так называемые псевдослучайные числа (при решении задач их применяют вместо случайных чисел); это привело к широкому внедрению метода во многие области науки и техники (статистическая физика, теория массового обслуживания, теория игр и др.). Метод Монте-Карло используют для вычисления интегралов, в особенности многомерных, для решения систем алгебраических уравнений высокого порядка, для исследования различного рода сложных систем (автоматического управления, экономических, биологических и т. д.).
Сущность метода Монте-Карло состоит в следующем: требуется найти значение а некоторой изучаемой величины. Для этого выбирают такую случайную величину X, математическое ожидание которой равно а:
.
Практически же поступают так: производят n испытаний, в результате которых получают n возможных значений X; вычисляют их среднее арифметическое
и
принимают х в качестве оценки (приближенного
значения)
искомого
числа а:
.
Поскольку метод Монте-Карло требует проведения большого числа испытаний, его часто называют методом статистических испытаний. Теория этого метода указывает, как наиболее целесообразно выбрать случайную величину X, как найти ее возможные значения. В частности, разрабатываются способы уменьшения дисперсии используемых случайных величин, в результате чего уменьшается ошибка, допускаемая при замене искомого математического ожидания а его оценкой .
Отыскание возможных значений случайной величины X (моделирование) называют «разыгрыванием случайной величины». Изложим лишь некоторые способы разыгрывания случайных величин и укажем, как оценить допускаемую при этом ошибку.
