Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по Теор Вер.doc
Скачиваний:
5
Добавлен:
01.03.2025
Размер:
1.99 Mб
Скачать

16.8 Характеристики вариационного ряда

Кроме выборочной средней и выборочной дисперсии применяются и другие характеристики вариационного ряда.

Модой называют варианту, которая имеет наибольшую частоту.

Например, для ряда

.

Медианой называют варианту, которая делит вариационный ряд на две части, равные по числу вариант.

Например, для ряда

.

Для ряда, где чётное число вариант медиана рассчитывается как среднее арифметическое из двух средних вариант.

Например, для ряда

.

Размахом варьирования R называют разность между наибольшей и наименьшей вариантами: .

Например, для ряда

.

Средним абсолютным отклонением называют среднее арифметическое абсолютных отклонений: .

Например, для ряда

.

.

Среднее абсолютное отклонение служит для характеристики рассеяния вариационного ряда.

Коэффициентом вариации V называют выраженное в процентах отношение выборочного среднего квадратического отклонения к выборочной средней:

17 Статистические оценки параметров распределения. Точечная и интервальная оценки

17.1 Статистические оценки параметров распределения

Пусть требуется изучить количественный признак генеральной совокупности. Допустим, что из теоретических соображений удалось установить, какое именно распределение имеет признак. Естественно возникает задача оценки параметров, которыми определяется это распределение. Например, если наперед известно, что изучаемый признак распределен в генеральной совокупности нормально, то необходимо оценить (приближенно найти) математическое ожидание и среднее квадратическое отклонение, так как эти два параметра полностью определяют нормальное распределение; если же есть основания считать что признак имеет, например, распределение Пуассона, то необходимо оценить параметр , которым это распределение определяется.

Обычно в распоряжении исследователя имеются лишь данные выборки, например значения количественного признака , , ..., , полученные в результате n наблюдений (здесь и далее наблюдения предполагаются независимыми). Через эти данные и выражают оцениваемый параметр. Рассматривая , , ..., как независимые случайные величины , , ..., можно сказать, что найти статистическую оценку неизвестного параметра теоретического распределения — это значит найти функцию от наблюдаемых случайных величин, которая и дает приближенное значение оцениваемого параметра.

Итак, статистической оценкой неизвестного параметра теоретического распределения называют функцию от наблюдаемых случайных величин.

17.2 Несмещенные, эффективные и состоятельные оценки

Для того чтобы статистические оценки давали "хорошие" приближения оцениваемых параметров, они должны удовлетворять определенным требованиям. Ниже указаны эти требования.

Пусть - статистическая оценка неизвестного параметра теоретического распределения. Допустим, что по выборке объема n найдена оценка . Повторим опыт, т.е. извлечем из генеральной совокупности другую выборку того же объема и по ее данным найдем оценку . Повторяя опыт многократно, получим числа , , …, , которые, вообще говоря, различны между собой. Таким образом, оценку можно рассматривать как случайную величину, а числа , , …, - как ее возможные значения.

Представим себе, что оценка дает приближенное значение с избытком; тогда каждое найденное по данным выборок число (i = 1, 2, ..., k) больше истинного значения . Ясно, что в этом случае и математическое ожидание (среднее значение) случайной величины больше, чем , т.е. М( )> . Очевидно, что если дает оценку с недостатком, то М( )< .

Таким образом, использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, привело бы к систематическим (одного знака) ошибкам. По этой причине естественно потребовать, чтобы математическое ожидание оценки было равно оцениваемому параметру. Хотя соблюдение этого требования не устранит ошибок (одни значения больше, а другие меньше ), однако ошибки разных знаков будут встречаться одинаково часто. Иными словами, соблюдение требований М( )= гарантирует от получения систематических ошибок.

Несмещенной называют статистическую оценку , математическое ожидание которой равно оцениваемому параметру при любом объеме выборки, т.е. М( )=

В теории ошибок измерений систематическими ошибками называют неслучайные ошибки, искажающие результаты измерений в одну определенную сторону. Например, измерение длины растянутой рулеткой систематически дает заниженные результаты.

Смещенной называют оценку, математическое ожидание которой не равно оцениваемому параметру.

Эффективной называют статистическую оценку, которая (при заданном объеме выборки n) имеет наименьшую возможную дисперсию.

Состоятельной называют статистическую оценку, которая при со стремится по вероятности к оцениваемому параметру. Например, если дисперсия несмещенной оценки при стремится к нулю, то такая оценка оказывается и состоятельной.