- •Теория вероятностей и математическая статистика
- •1 Краткая историческая справка
- •2 Основные комбинаторные объекты (типы выборок). Формулы и правила расчёта
- •2.1 Примеры решения задач
- •3 Случайные события. Классическое определение вероятности
- •3.1 Случайные события
- •3.2 Классическое определение вероятности
- •3.3 Относительная частота события
- •4 Статистическая и геометрическая вероятности
- •5 Вероятность сложных событий. Противоположные события. Условная вероятность
- •5.1 Алгебра случайных событий
- •5.2 Теорема сложения вероятностей несовместных событий
- •5.3 Противоположные события
- •5.4 Теорема умножения вероятностей
- •6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
- •6.1 Независимые события
- •6.2 Вероятность появления хотя бы одного события
- •6.3 Формула полной вероятности
- •6.4 Формулы Бейеса
- •7 Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа
- •7.1 Формула Бернулли
- •7.2 Локальная теорема Лапласа
- •7.3 Интегральная теорема Лапласа
- •8 Понятие дсв. Распределение дсв. Функции от дсв
- •8.1 Случайная величина
- •8.2 Дискретная случайная величина (дсв)
- •8.3 Независимые случайные величины
- •8.4 Функция распределения случайной величины
- •9 Характеристики дсв и их свойства. Математическое ожидание, дисперсия, ско
- •9.1 Математическое ожидание дискретной случайной величины
- •9.2 Свойства математического ожидания
- •9.3 Дисперсия дискретной случайной величины
- •9.4 Свойства дисперсии
- •9.5 Среднее квадратическое отклонение дискретной случайной величины
- •10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
- •10.1 Биноминальное распределение
- •10.2 Распределение Пуассона
- •10.3 Геометрическое распределение вероятности
- •11 Понятие нсв. Равномерно распределенная нсв
- •11.1 Непрерывная случайная величина (нсв)
- •11.2 Равномерно распределённая нсв
- •12 Функция плотности нсв. Характеристики нсв
- •12.1 Функция плотности нсв
- •12.2 Свойства плотности распределения
- •12.3 Числовые характеристики непрерывных случайных величин
- •13 Нормальное распределение. Кривая Гаусса. Правило трёх сигм
- •13.1 Нормальный закон распределения
- •13.2 Функция Лапласа
- •13.3 Правило трёх сигм
- •14 Показательное распределение. Характеристики показательного распределения
- •14.1 Показательное распределение
- •14.2 Характеристики показательного распределения
- •14.3 Показательный закон надежности
- •15 Центральная предельная теорема. Закон больших чисел
- •15.1 Неравенство Чебышева
- •15.2 Теорема Чебышева
- •15.3 Сущность теоремы Чебышева
- •15.4 Теорема Бернулли
- •15.5 Центральная предельная теорема
- •16 Выборочный метод. Полигон и гистограмма. Числовые характеристики выборки
- •16.1 Задачи математической статистики
- •16.2 Генеральная и выборочная совокупности
- •16.3 Повторная и бесповторная выборки
- •16.4 Способы отбора
- •16.5 Статистическое распределение выборки
- •16.6 Эмпирическая функция распределения
- •16.7 Полигон и гистограмма
- •16.8 Характеристики вариационного ряда
- •17 Статистические оценки параметров распределения. Точечная и интервальная оценки
- •17.1 Статистические оценки параметров распределения
- •17.2 Несмещенные, эффективные и состоятельные оценки
- •17.3 Генеральная и выборочная средняя
- •17.4 Генеральная и выборочная дисперсия
- •17.5 Точность оценки, надёжность. Доверительный интервал
- •17.6 Доверительные интервалы для оценки математического ожидания нормального распределения
- •17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •18 Моделирование случайных величин. Моделирование дсв, нсв
- •18.1 Предмет метода Монте-Карло
- •18.2 Случайные числа
- •18.3 Разыгрывание дискретной случайной величины
- •18.4 Разыгрывание противоположных событий
- •18.5 Разыгрывание полной группы событий
- •18.6 Разыгрывание непрерывной случайной величины. Метод обратных функций
- •18.7 Приближённое разыгрывание нормальной случайной величины
16.5 Статистическое распределение выборки
Пусть
из генеральной совокупности извлечена
выборка, причем
наблюдалось
раз,
—
раз,
—
раз и
— объем выборки. Наблюдаемые значения
называют вариантами,
а последовательность вариант, записанных
в возрастающем порядке, — вариационным
рядом.
Числа наблюдений называют частотами,
а их отношения к объему выборки
— относительными
частотами.
Статистическим распределением выборки называют перечень вариант и соответствующих им частот или относительных частот.
Заметим, что в теории вероятностей под распределением понимают соответствие между возможными значениями случайной величины и их вероятностями, а в математической статистике — соответствие между наблюдаемыми вариантами и их частотами, или относительными частотами.
Пример. Задано распределение частот выборки объема n = 20:
Написать распределение относительных частот.
Решение: Найдем относительные частоты, для чего разделим частоты на объем выборки:
,
,
.
Напишем распределение относительных частот:
Контроль: 0,15 + 0,50 + 0,35=1.
16.6 Эмпирическая функция распределения
Пусть
известно статистическое распределение
частот количественного признака X.
Введем обозначения:
— число наблюдений, при которых
наблюдалось значение признака, меньшее
х; n
— общее число наблюдений (объем выборки).
Ясно, что относительная частота события
X<х равна
.
Если х изменяется, то, вообще говоря,
изменяется и относительная частота,
т.е. относительная частота
есть функция от х. Так как, эта функция
находится эмпирическим (опытным) путем,
то ее называют эмпирической.
Эмпирической
функцией распределения
(функцией распределения выборки) называют
функцию
,
определяющую для каждого значения х
относительную частоту события X<х.
Итак,
по определению,
где — число вариант, меньших х; n — объем выборки.
В
отличие от эмпирической функции
распределения выборки функцию
распределения
генеральной совокупности называют
теоретической
функцией распределения.
Различие между эмпирической и теоретической
функциями состоит в том, что теоретическая
функция
определяет вероятность события X<х, а
эмпирическая функция
определяет относительную частоту этого
же события.
обладает всеми свойствами . Действительно, из определения функции вытекают следующие ее свойства:
1. значения эмпирической функции принадлежат отрезку [0, 1];
2. — неубывающая функция;
3.
если
— наименьшая варианта, то
при
;
если
— наибольшая варианта, то
при
.
16.7 Полигон и гистограмма
Для наглядности строят различные графики статистического распределения и, в частности, полигон и гистограмму.
Полигоном
частот
называют ломаную, отрезки которой
соединяют точки
,
,
…,
.
Для построения полигона частот на оси
абсцисс откладывают варианты
,
а на оси ординат – соответствующие им
частоты
.
Точки
соединяют отрезками прямых и получают
полигон частот.
Пример. Построить полигон частот по данному распределению выборки:
Решение:
В случае непрерывного признака целесообразно строить гистограмму, для чего интервал, в котором заключены все наблюдаемые значения признака, разбивают на несколько частичных интервалов длиной h и находят для каждого частичного интервала - сумму частот вариант, попавших в i-й интервал.
Гистограммой
частот
называют ступенчатую фигуру, состоящую
из прямоугольников, основаниями которых
служат частичные интервалы длиною h,
а высоты равны отношению
(плотность частоты).
