
- •Теория вероятностей и математическая статистика
- •1 Краткая историческая справка
- •2 Основные комбинаторные объекты (типы выборок). Формулы и правила расчёта
- •2.1 Примеры решения задач
- •3 Случайные события. Классическое определение вероятности
- •3.1 Случайные события
- •3.2 Классическое определение вероятности
- •3.3 Относительная частота события
- •4 Статистическая и геометрическая вероятности
- •5 Вероятность сложных событий. Противоположные события. Условная вероятность
- •5.1 Алгебра случайных событий
- •5.2 Теорема сложения вероятностей несовместных событий
- •5.3 Противоположные события
- •5.4 Теорема умножения вероятностей
- •6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
- •6.1 Независимые события
- •6.2 Вероятность появления хотя бы одного события
- •6.3 Формула полной вероятности
- •6.4 Формулы Бейеса
- •7 Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа
- •7.1 Формула Бернулли
- •7.2 Локальная теорема Лапласа
- •7.3 Интегральная теорема Лапласа
- •8 Понятие дсв. Распределение дсв. Функции от дсв
- •8.1 Случайная величина
- •8.2 Дискретная случайная величина (дсв)
- •8.3 Независимые случайные величины
- •8.4 Функция распределения случайной величины
- •9 Характеристики дсв и их свойства. Математическое ожидание, дисперсия, ско
- •9.1 Математическое ожидание дискретной случайной величины
- •9.2 Свойства математического ожидания
- •9.3 Дисперсия дискретной случайной величины
- •9.4 Свойства дисперсии
- •9.5 Среднее квадратическое отклонение дискретной случайной величины
- •10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
- •10.1 Биноминальное распределение
- •10.2 Распределение Пуассона
- •10.3 Геометрическое распределение вероятности
- •11 Понятие нсв. Равномерно распределенная нсв
- •11.1 Непрерывная случайная величина (нсв)
- •11.2 Равномерно распределённая нсв
- •12 Функция плотности нсв. Характеристики нсв
- •12.1 Функция плотности нсв
- •12.2 Свойства плотности распределения
- •12.3 Числовые характеристики непрерывных случайных величин
- •13 Нормальное распределение. Кривая Гаусса. Правило трёх сигм
- •13.1 Нормальный закон распределения
- •13.2 Функция Лапласа
- •13.3 Правило трёх сигм
- •14 Показательное распределение. Характеристики показательного распределения
- •14.1 Показательное распределение
- •14.2 Характеристики показательного распределения
- •14.3 Показательный закон надежности
- •15 Центральная предельная теорема. Закон больших чисел
- •15.1 Неравенство Чебышева
- •15.2 Теорема Чебышева
- •15.3 Сущность теоремы Чебышева
- •15.4 Теорема Бернулли
- •15.5 Центральная предельная теорема
- •16 Выборочный метод. Полигон и гистограмма. Числовые характеристики выборки
- •16.1 Задачи математической статистики
- •16.2 Генеральная и выборочная совокупности
- •16.3 Повторная и бесповторная выборки
- •16.4 Способы отбора
- •16.5 Статистическое распределение выборки
- •16.6 Эмпирическая функция распределения
- •16.7 Полигон и гистограмма
- •16.8 Характеристики вариационного ряда
- •17 Статистические оценки параметров распределения. Точечная и интервальная оценки
- •17.1 Статистические оценки параметров распределения
- •17.2 Несмещенные, эффективные и состоятельные оценки
- •17.3 Генеральная и выборочная средняя
- •17.4 Генеральная и выборочная дисперсия
- •17.5 Точность оценки, надёжность. Доверительный интервал
- •17.6 Доверительные интервалы для оценки математического ожидания нормального распределения
- •17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •18 Моделирование случайных величин. Моделирование дсв, нсв
- •18.1 Предмет метода Монте-Карло
- •18.2 Случайные числа
- •18.3 Разыгрывание дискретной случайной величины
- •18.4 Разыгрывание противоположных событий
- •18.5 Разыгрывание полной группы событий
- •18.6 Разыгрывание непрерывной случайной величины. Метод обратных функций
- •18.7 Приближённое разыгрывание нормальной случайной величины
15 Центральная предельная теорема. Закон больших чисел
Как уже известно, нельзя заранее уверенно предвидеть, какое из возможных значений примет случайная величина в итоге испытания; это зависит от многих случайных причин, учесть которые невозможно. Казалось бы, поскольку о каждой случайной величине мы располагаем в этом смысле весьма скромными сведениями, то вряд ли можно установить закономерности поведения и суммы достаточно большого числа случайных величин. На самом деле это не так. Оказывается, что при некоторых сравнительно широких условиях суммарное поведение достаточно большого числа случайных величин почти утрачивает случайный характер и становится закономерным.
Для практики очень важно знание условий, при выполнении которых совокупное действие очень многих случайных причин приводит к результату, почти не зависящему от случая, так как позволяет предвидеть ход явлений. Эти условия и указываются в теоремах, носящих общее название закона больших чисел. К ним относятся теоремы Чебышева и Бернулли. Теорема Чебышева является наиболее общим законом больших чисел, теорема Бернулли - простейшим.
15.1 Неравенство Чебышева
Неравенство Чебышева справедливо для дискретных и непрерывных случайных величин.
Рассмотрим дискретную случайную величину X, заданную таблицей распределения:
-
Х
x1
x2
…
xn
p
p1
p2
…
pn
Поставим
перед собой задачу оценить вероятность
того, что отклонение случайной величины
от ее математического ожидания не
превышает по абсолютной величине
положительного числа
.
Если
достаточно мало, то мы оценим, таким
образом, вероятность того, что X примет
значения, достаточно близкие к своему
математическому ожиданию. П. Л. Чебышев
доказал неравенство, позволяющее дать
интересующую нас оценку.
Неравенство
Чебышева.
Вероятность
того, что отклонение случайной величины
X от ее математического ожидания по
абсолютной величине меньше положительного
числа
,
не меньше, чем
:
.
15.2 Теорема Чебышева
Теорема
Чебышева.
Если
,
,
,
…,
- попарно независимые случайные величины,
причем дисперсии их равномерно ограничены
(не превышают постоянного числа С), то,
как бы мало ни было положительное число
,
вероятность неравенства
будет как угодно близка к единице, если число случайных величин достаточно велико.
Другими словами, в условиях теоремы
Таким образом, теорема Чебышева утверждает, что если рассматривается достаточно большое число независимых случайных величин, имеющих ограниченные дисперсии, то почти достоверным можно считать событие, состоящее в том, что отклонение среднего арифметического случайных величин от среднего арифметического их математических ожиданий будет по абсолютной величине сколь угодно малым.
Формулируя теорему Чебышева, мы предполагали, что случайные величины имеют различные математические ожидания. На практике часто бывает, что случайные величины имеют одно и то же математическое ожидание. Очевидно, что если вновь допустить, что дисперсии этих величин ограничены, то к ним будет применима теорема Чебышева.
Обозначим математическое ожидание каждой из случайных величин через а; в рассматриваемом случае среднее арифметическое математических ожиданий, как легко видеть, также равно а. Мы можем сформулировать теорему Чебышева для рассматриваемого частного случая. Если , , , …, - попарно независимые случайные величины, имеющие одно и то же математическое ожидание а, и если дисперсии этих величин равномерно ограничены, то, как бы мало ни было число >0, вероятность неравенства
будет как угодно близка к единице, если число случайных величин достаточно велико.
Другими словами, в условиях теоремы будет иметь место равенство
.