
- •Теория вероятностей и математическая статистика
- •1 Краткая историческая справка
- •2 Основные комбинаторные объекты (типы выборок). Формулы и правила расчёта
- •2.1 Примеры решения задач
- •3 Случайные события. Классическое определение вероятности
- •3.1 Случайные события
- •3.2 Классическое определение вероятности
- •3.3 Относительная частота события
- •4 Статистическая и геометрическая вероятности
- •5 Вероятность сложных событий. Противоположные события. Условная вероятность
- •5.1 Алгебра случайных событий
- •5.2 Теорема сложения вероятностей несовместных событий
- •5.3 Противоположные события
- •5.4 Теорема умножения вероятностей
- •6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
- •6.1 Независимые события
- •6.2 Вероятность появления хотя бы одного события
- •6.3 Формула полной вероятности
- •6.4 Формулы Бейеса
- •7 Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа
- •7.1 Формула Бернулли
- •7.2 Локальная теорема Лапласа
- •7.3 Интегральная теорема Лапласа
- •8 Понятие дсв. Распределение дсв. Функции от дсв
- •8.1 Случайная величина
- •8.2 Дискретная случайная величина (дсв)
- •8.3 Независимые случайные величины
- •8.4 Функция распределения случайной величины
- •9 Характеристики дсв и их свойства. Математическое ожидание, дисперсия, ско
- •9.1 Математическое ожидание дискретной случайной величины
- •9.2 Свойства математического ожидания
- •9.3 Дисперсия дискретной случайной величины
- •9.4 Свойства дисперсии
- •9.5 Среднее квадратическое отклонение дискретной случайной величины
- •10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
- •10.1 Биноминальное распределение
- •10.2 Распределение Пуассона
- •10.3 Геометрическое распределение вероятности
- •11 Понятие нсв. Равномерно распределенная нсв
- •11.1 Непрерывная случайная величина (нсв)
- •11.2 Равномерно распределённая нсв
- •12 Функция плотности нсв. Характеристики нсв
- •12.1 Функция плотности нсв
- •12.2 Свойства плотности распределения
- •12.3 Числовые характеристики непрерывных случайных величин
- •13 Нормальное распределение. Кривая Гаусса. Правило трёх сигм
- •13.1 Нормальный закон распределения
- •13.2 Функция Лапласа
- •13.3 Правило трёх сигм
- •14 Показательное распределение. Характеристики показательного распределения
- •14.1 Показательное распределение
- •14.2 Характеристики показательного распределения
- •14.3 Показательный закон надежности
- •15 Центральная предельная теорема. Закон больших чисел
- •15.1 Неравенство Чебышева
- •15.2 Теорема Чебышева
- •15.3 Сущность теоремы Чебышева
- •15.4 Теорема Бернулли
- •15.5 Центральная предельная теорема
- •16 Выборочный метод. Полигон и гистограмма. Числовые характеристики выборки
- •16.1 Задачи математической статистики
- •16.2 Генеральная и выборочная совокупности
- •16.3 Повторная и бесповторная выборки
- •16.4 Способы отбора
- •16.5 Статистическое распределение выборки
- •16.6 Эмпирическая функция распределения
- •16.7 Полигон и гистограмма
- •16.8 Характеристики вариационного ряда
- •17 Статистические оценки параметров распределения. Точечная и интервальная оценки
- •17.1 Статистические оценки параметров распределения
- •17.2 Несмещенные, эффективные и состоятельные оценки
- •17.3 Генеральная и выборочная средняя
- •17.4 Генеральная и выборочная дисперсия
- •17.5 Точность оценки, надёжность. Доверительный интервал
- •17.6 Доверительные интервалы для оценки математического ожидания нормального распределения
- •17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •18 Моделирование случайных величин. Моделирование дсв, нсв
- •18.1 Предмет метода Монте-Карло
- •18.2 Случайные числа
- •18.3 Разыгрывание дискретной случайной величины
- •18.4 Разыгрывание противоположных событий
- •18.5 Разыгрывание полной группы событий
- •18.6 Разыгрывание непрерывной случайной величины. Метод обратных функций
- •18.7 Приближённое разыгрывание нормальной случайной величины
10.2 Распределение Пуассона
Пусть
производится n
независимых испытаний, в каждом из
которых вероятность появления события
А равна р. Для определения вероятности
k появлений события в этих испытаниях
используют формулу Бернулли. Если же n
велико, то пользуются асимптотической
формулой Лапласа. Однако эта формула
непригодна, если вероятность события
мала (
).
В этих случаях (n
велико, р мало) прибегают к асимптотической
формуле Пуассона.
Итак,
поставим перед собой задачу найти
вероятность того, что при очень большом
числе испытаний, в каждом из которых
вероятность события очень мала, событие
наступит ровно k раз. Сделаем важное
допущение: произведение
сохраняет постоянное значение, а именно
.
Это означает, что среднее число появлений
события в различных сериях испытаний,
т. е. при различных значениях n,
остается неизменным.
Таким
образом:
.
Эта формула выражает закон распределения Пуассона вероятностей массовых (n велико) и редких (р мало) событий.
Замечание.
Имеются специальные таблицы, пользуясь
которыми можно найти
зная
k и
.
Пример. Завод отправил на базу 5000 доброкачественных изделий. Вероятность того, что в пути изделие повредится, равно 0,0002. Найти вероятность того, что на базу прибудут 3 негодных изделия.
Решение: По условию, n=5000, р=0,0002, k=3. Найдем :
По формуле Пуассона искомая вероятность приближённо равна:
.
10.3 Геометрическое распределение вероятности
Пусть производятся независимые испытания, в каждом из которых вероятность появления события А равна р. Следовательно вероятность непоявления события А q=1-р. Испытания заканчиваются, как только появится событие А. Таким образом, если событие А появилось в k-ом испытании, то в предшествующих k-1 испытаниях оно не появилось.
Вероятность этого сложного события вычисляется по формуле:
Полагая k=1, 2, 3,… получим геометрическую прогрессию с первым членом р и знаменателем q. По этой причине данное распределение называют геометрическим распределением.
Пример. Из орудия производиться стрельба по цели до первого попадания. Вероятность попадания в цель р=0,6. Найдите вероятность того, что попадание произойдёт при третьем выстреле.
Решение:
По условию р=0,6, следовательно q=0,4. k=3.
Искомая вероятность:
Математическое
ожидание случайной величины Х, имеющей
геометрическое распределение с параметром
р рассчитывается по формуле:
.
Дисперсия:
.
11 Понятие нсв. Равномерно распределенная нсв
11.1 Непрерывная случайная величина (нсв)
Непрерывной случайной величиной называется такая величина, которая может принимать любые значения из некоторого конечного или бесконечного промежутка.
Очевидно, что число возможных значений непрерывной случайной величины бесконечно.
Например: дальность полёта артиллерийского снаряда; расход электроэнергии на предприятии за месяц.
11.2 Равномерно распределённая нсв
Непрерывная случайная величина имеет равномерное распределение на отрезке [a, b], если на этом отрезке плотность распределения случайной величины постоянна, а вне его равна нулю.
Постоянная величина С может быть определена из условия равенства единице площади, ограниченной кривой распределения.
f(x)
0 a b x
Получаем
.
Для того чтобы случайная величина подчинялась закону равномерного распределения необходимо, чтобы ее значения лежали внутри некоторого определенного интервала, и внутри этого интервала значения этой случайной величины были бы равновероятны.
Определим математическое ожидание и дисперсию случайной величины, подчиненной равномерному закону распределения.
Вероятность попадания случайной величины в заданный интервал: