
- •Теория вероятностей и математическая статистика
- •1 Краткая историческая справка
- •2 Основные комбинаторные объекты (типы выборок). Формулы и правила расчёта
- •2.1 Примеры решения задач
- •3 Случайные события. Классическое определение вероятности
- •3.1 Случайные события
- •3.2 Классическое определение вероятности
- •3.3 Относительная частота события
- •4 Статистическая и геометрическая вероятности
- •5 Вероятность сложных событий. Противоположные события. Условная вероятность
- •5.1 Алгебра случайных событий
- •5.2 Теорема сложения вероятностей несовместных событий
- •5.3 Противоположные события
- •5.4 Теорема умножения вероятностей
- •6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
- •6.1 Независимые события
- •6.2 Вероятность появления хотя бы одного события
- •6.3 Формула полной вероятности
- •6.4 Формулы Бейеса
- •7 Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа
- •7.1 Формула Бернулли
- •7.2 Локальная теорема Лапласа
- •7.3 Интегральная теорема Лапласа
- •8 Понятие дсв. Распределение дсв. Функции от дсв
- •8.1 Случайная величина
- •8.2 Дискретная случайная величина (дсв)
- •8.3 Независимые случайные величины
- •8.4 Функция распределения случайной величины
- •9 Характеристики дсв и их свойства. Математическое ожидание, дисперсия, ско
- •9.1 Математическое ожидание дискретной случайной величины
- •9.2 Свойства математического ожидания
- •9.3 Дисперсия дискретной случайной величины
- •9.4 Свойства дисперсии
- •9.5 Среднее квадратическое отклонение дискретной случайной величины
- •10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
- •10.1 Биноминальное распределение
- •10.2 Распределение Пуассона
- •10.3 Геометрическое распределение вероятности
- •11 Понятие нсв. Равномерно распределенная нсв
- •11.1 Непрерывная случайная величина (нсв)
- •11.2 Равномерно распределённая нсв
- •12 Функция плотности нсв. Характеристики нсв
- •12.1 Функция плотности нсв
- •12.2 Свойства плотности распределения
- •12.3 Числовые характеристики непрерывных случайных величин
- •13 Нормальное распределение. Кривая Гаусса. Правило трёх сигм
- •13.1 Нормальный закон распределения
- •13.2 Функция Лапласа
- •13.3 Правило трёх сигм
- •14 Показательное распределение. Характеристики показательного распределения
- •14.1 Показательное распределение
- •14.2 Характеристики показательного распределения
- •14.3 Показательный закон надежности
- •15 Центральная предельная теорема. Закон больших чисел
- •15.1 Неравенство Чебышева
- •15.2 Теорема Чебышева
- •15.3 Сущность теоремы Чебышева
- •15.4 Теорема Бернулли
- •15.5 Центральная предельная теорема
- •16 Выборочный метод. Полигон и гистограмма. Числовые характеристики выборки
- •16.1 Задачи математической статистики
- •16.2 Генеральная и выборочная совокупности
- •16.3 Повторная и бесповторная выборки
- •16.4 Способы отбора
- •16.5 Статистическое распределение выборки
- •16.6 Эмпирическая функция распределения
- •16.7 Полигон и гистограмма
- •16.8 Характеристики вариационного ряда
- •17 Статистические оценки параметров распределения. Точечная и интервальная оценки
- •17.1 Статистические оценки параметров распределения
- •17.2 Несмещенные, эффективные и состоятельные оценки
- •17.3 Генеральная и выборочная средняя
- •17.4 Генеральная и выборочная дисперсия
- •17.5 Точность оценки, надёжность. Доверительный интервал
- •17.6 Доверительные интервалы для оценки математического ожидания нормального распределения
- •17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •18 Моделирование случайных величин. Моделирование дсв, нсв
- •18.1 Предмет метода Монте-Карло
- •18.2 Случайные числа
- •18.3 Разыгрывание дискретной случайной величины
- •18.4 Разыгрывание противоположных событий
- •18.5 Разыгрывание полной группы событий
- •18.6 Разыгрывание непрерывной случайной величины. Метод обратных функций
- •18.7 Приближённое разыгрывание нормальной случайной величины
9.4 Свойства дисперсии
1.
Дисперсия постоянной величины равна
нулю.
.
2.
Постоянный множитель можно выносить
за знак дисперсии, возводя его в квадрат.
.
3.
Дисперсия суммы двух независимых
случайных величин равна сумме дисперсий
этих величин.
.
4.
Дисперсия разности двух независимых
случайных величин равна сумме дисперсий
этих величин.
.
Теорема. Дисперсия числа появления события А в п независимых испытаний, в каждом из которых вероятность р появления события постоянна, равна произведению числа испытаний на вероятности появления и непоявления события в каждом испытании.
9.5 Среднее квадратическое отклонение дискретной случайной величины
Средним квадратическим отклонением случайной величины Х называется квадратный корень из дисперсии.
Теорема. Среднее квадратичное отклонение суммы конечного числа взаимно независимых случайных величин равно квадратному корню из суммы квадратов средних квадратических отклонений этих величин.
10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
10.1 Биноминальное распределение
Пусть производится n независимых испытаний, в каждом из которых событие А может появиться либо не появиться. Вероятность наступления события во всех испытаниях постоянна и равна р (следовательно, вероятность непоявления q=l-р). Рассмотрим в качестве дискретной случайной величины X число появлений события А в этих испытаниях.
Поставим
перед собой задачу: найти закон
распределения величины X. Для ее решения
требуется определить возможные значения
X и их вероятности. Очевидно, событие А
в n
испытаниях может либо не появиться,
либо появиться 1 раз, либо 2 раза, ..., либо
n
раз. Таким образом, возможные значения
X таковы:
,
,
,
…,
.
Остается найти вероятности этих возможных
значений, для чего достаточно
воспользоваться формулой Бернулли:
,
где k=0,
1, 2, …, n.
Формула Бернулли и является аналитическим выражением искомого закона распределения.
Биномиальным
называют распределение вероятностей,
определяемое формулой Бернулли. Закон
назван «биномиальным» потому, что правую
часть равенства можно рассматривать
как общий член разложения бинома Ньютона:
.
Таким
образом, первый член разложения
определяет
вероятность наступления рассматриваемого
события n
раз в n
независимых испытаниях; второй член
определяет вероятность наступления
события n—1
раз; ...; последний член определяет
вероятность того, что событие не появится
ни разу.
Напишем биномиальный закон в виде таблицы:
Пример. Монета брошена 2 раза. Написать в виде таблицы закон распределения случайной величины X - числа выпадений «герба».
Решение: Вероятность появления «герба» в каждом бросании монеты р=1/2, следовательно, вероятность непоявления «герба» q=1-1/2=1/2.
При двух бросаниях монеты «герб» может появиться либо 2 раза, либо 1 раз, либо совсем не появиться. Таким образом, возможные значения X таковы: , , . Найдем вероятности этих возможных значений по формуле Бернулли:
;
;
.
Напишем искомый закон распределения:
Контроль: 0,25 + 0,5 + 0,25=1.