- •Теория вероятностей и математическая статистика
- •1 Краткая историческая справка
- •2 Основные комбинаторные объекты (типы выборок). Формулы и правила расчёта
- •2.1 Примеры решения задач
- •3 Случайные события. Классическое определение вероятности
- •3.1 Случайные события
- •3.2 Классическое определение вероятности
- •3.3 Относительная частота события
- •4 Статистическая и геометрическая вероятности
- •5 Вероятность сложных событий. Противоположные события. Условная вероятность
- •5.1 Алгебра случайных событий
- •5.2 Теорема сложения вероятностей несовместных событий
- •5.3 Противоположные события
- •5.4 Теорема умножения вероятностей
- •6 Вероятность появления хотя бы одного события. Формула полной вероятности. Формулы Бейеса
- •6.1 Независимые события
- •6.2 Вероятность появления хотя бы одного события
- •6.3 Формула полной вероятности
- •6.4 Формулы Бейеса
- •7 Схема Бернулли. Локальная и интегральная теоремы Муавра-Лапласа
- •7.1 Формула Бернулли
- •7.2 Локальная теорема Лапласа
- •7.3 Интегральная теорема Лапласа
- •8 Понятие дсв. Распределение дсв. Функции от дсв
- •8.1 Случайная величина
- •8.2 Дискретная случайная величина (дсв)
- •8.3 Независимые случайные величины
- •8.4 Функция распределения случайной величины
- •9 Характеристики дсв и их свойства. Математическое ожидание, дисперсия, ско
- •9.1 Математическое ожидание дискретной случайной величины
- •9.2 Свойства математического ожидания
- •9.3 Дисперсия дискретной случайной величины
- •9.4 Свойства дисперсии
- •9.5 Среднее квадратическое отклонение дискретной случайной величины
- •10 Биноминальное распределение. Распределение Пуассона. Геометрическое распределение
- •10.1 Биноминальное распределение
- •10.2 Распределение Пуассона
- •10.3 Геометрическое распределение вероятности
- •11 Понятие нсв. Равномерно распределенная нсв
- •11.1 Непрерывная случайная величина (нсв)
- •11.2 Равномерно распределённая нсв
- •12 Функция плотности нсв. Характеристики нсв
- •12.1 Функция плотности нсв
- •12.2 Свойства плотности распределения
- •12.3 Числовые характеристики непрерывных случайных величин
- •13 Нормальное распределение. Кривая Гаусса. Правило трёх сигм
- •13.1 Нормальный закон распределения
- •13.2 Функция Лапласа
- •13.3 Правило трёх сигм
- •14 Показательное распределение. Характеристики показательного распределения
- •14.1 Показательное распределение
- •14.2 Характеристики показательного распределения
- •14.3 Показательный закон надежности
- •15 Центральная предельная теорема. Закон больших чисел
- •15.1 Неравенство Чебышева
- •15.2 Теорема Чебышева
- •15.3 Сущность теоремы Чебышева
- •15.4 Теорема Бернулли
- •15.5 Центральная предельная теорема
- •16 Выборочный метод. Полигон и гистограмма. Числовые характеристики выборки
- •16.1 Задачи математической статистики
- •16.2 Генеральная и выборочная совокупности
- •16.3 Повторная и бесповторная выборки
- •16.4 Способы отбора
- •16.5 Статистическое распределение выборки
- •16.6 Эмпирическая функция распределения
- •16.7 Полигон и гистограмма
- •16.8 Характеристики вариационного ряда
- •17 Статистические оценки параметров распределения. Точечная и интервальная оценки
- •17.1 Статистические оценки параметров распределения
- •17.2 Несмещенные, эффективные и состоятельные оценки
- •17.3 Генеральная и выборочная средняя
- •17.4 Генеральная и выборочная дисперсия
- •17.5 Точность оценки, надёжность. Доверительный интервал
- •17.6 Доверительные интервалы для оценки математического ожидания нормального распределения
- •17.7 Доверительные интервалы для оценки среднего квадратического отклонения нормального распределения
- •18 Моделирование случайных величин. Моделирование дсв, нсв
- •18.1 Предмет метода Монте-Карло
- •18.2 Случайные числа
- •18.3 Разыгрывание дискретной случайной величины
- •18.4 Разыгрывание противоположных событий
- •18.5 Разыгрывание полной группы событий
- •18.6 Разыгрывание непрерывной случайной величины. Метод обратных функций
- •18.7 Приближённое разыгрывание нормальной случайной величины
8.3 Независимые случайные величины
Две случайные величины называются независимыми, если закон распределения одной из них не зависит от того, какие возможные значения приняла другая величина.
Несколько случайных величин называются взаимно независимыми, если законы распределения любого числа из них не зависят от того, какие возможные значения приняли остальные.
8.4 Функция распределения случайной величины
Во всех рассмотренных выше случаях случайная величина определялась путем задания значений самой величины и вероятностей этих значений.
Однако такой метод применим далеко не всегда. Например, в случае непрерывной случайной величины, ее значения могут заполнять некоторый произвольный интервал. Очевидно, что в этом случае задать все значения случайной величины просто нереально. Даже в случае, когда это сделать можно, зачастую задача решается чрезвычайно сложно. Поэтому встает задача по возможности отказаться от индивидуального подхода к каждой задаче и найти по возможности наиболее общий способ задания любых типов случайных величин.
Пусть х – действительное число. Вероятность события, состоящего в том, что Х примет значение, меньшее х, т.е. Х<x, обозначим через F(x).
Функцией
распределения
называют функцию F(x),
определяющую вероятность того, что
случайная величина Х в результате
испытания примет значение, меньшее х:
.
Геометрически это равенство можно истолковать так: F(x) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.
Функцию распределения также называют интегральной функцией распределения или интегральным законом распределения.
Функция распределения существует как для непрерывных, так и для дискретных случайных величин. Она полностью характеризует случайную величину и является одной из форм закона распределения.
Свойства функции распределения:
1) значения функции распределения принадлежат отрезку [0, 1].
.
2) F(x) – неубывающая функция.
при
.
3) Вероятность того, что случайная величина примет значение, заключенное в интервале (a, b) , равна приращению функции распределения на этом интервале.
.
4) На минус бесконечности функция распределения равна нулю, на плюс бесконечности функция распределения равна единице.
5) Вероятность того, что непрерывная случайная величина Х примет одно определенное значение, равна нулю.
Таким образом, не имеет смысла говорить о каком – либо конкретном значении случайной величины. Интерес представляет только вероятность попадания случайной величины в какой – либо интервал, что соответствует большинству практических задач.
Пример 1. Испытывается устройство, состоящее из четырех независимо работающих приборов. Вероятности отказа каждого из приборов равны соответственно р1=0,3; p2=0,4; p3=0,5; p4=0,6. Построить интегральную функцию распределения.
Решение: Принимая за случайную величину число отказавших приборов, видим что эта случайная величина может принимать значения 0, 1, 2, 3, 4.
Для
составления закона распределения этой
случайной величины необходимо определить
соответствующие вероятности. Примем
.
1) Не отказал ни один прибор.
2) Отказал один из приборов.
.
3) Отказали два прибора.
4)
Отказали три прибора.
5) Отказали все приборы.
Получаем закон распределения:
-
x
0
1
2
3
4
p
0,084
0,302
0,38
0,198
0,036
Ф
ункция
распределения будет иметь вид (см. рис.
5):
Рис. 5.
Пример 2: Случайная величина задана функцией распределения
Найти
вероятность того, что в результате
испытания величина Х примет значение,
заключённое в интервале
.
Решение:
Вероятность
того, что случайная величина примет
значение, заключенное в интервале (a,
b)
, равна приращению функции распределения
на этом интервале
.
Положив
,
,
получим:
.
