
- •1. Типы структур данных
- •2. Стек
- •Void stack::Push(int NewElement){
- •Int stack::Pop(){
- •If(!Empty){
- •2.1. Применения стека
- •2.1.1. Программный стек
- •Void main(void){
- •2.1.2. Реализация рекурсии
- •2.1.2.1. Обход шахматной доски ходом коня
- •Int I,j; // координаты клетки
- •Int move; // номер хода, которым покидаем клетку
- •Int I,j; // текущие координаты клетки
- •Int V; // указатель стека
- •Int BegMove,k,i2,j2;
- •If(Move(n,I,j,k,&i2,&j2) && !Board[i2][j2]){
- •If(Good){
- •2.1.2.1. Вычисление определенного интеграла
- •Interval Stack[maxstack];
- •2.1.3. Польская инверсная запись (полиз)
- •If(isalpha(z)) return 'б'; // буква – операнд
- •Int Poliz(char *in,char *out){
- •2.1.4. Вычисление выражения, представленного в полиз
- •Контрольные вопросы
- •3. Очередь
- •Контрольные вопросы
- •4. Массивы
- •4.1. Размещение прямоугольных массивов в последовательной памяти
- •4.2. Метод Айлиффа
- •Контрольные вопросы
- •5. Списочные структуры
- •5.1. Односвязный линейный список
- •5.1.1. Представление односвязного списка
- •5.1.2. Операции над односвязным списком
- •!!!!!!5.1.3. Голова списка
- •5.1.4 Циклический список
- •5.1.5. Пример. Сложение многочленов
- •Int px,py,pz; // степени X,y,z
- •Int PowerCmp(node *p, node *q){
- •Void PoliAdd(node *p, node *q){
- •5.2. Двусвязный линейный список
- •Void DeleteUzel(uzel *p){
- •5.3. Ортогональные списки
- •Int Row,Col; // строка и столбец элемента
- •5.4. Списки общего вида
- •5.4.1. Пример. Топологическая сортировка.
- •Int count; // счетчик числа элементов, предшествующих
- •Void TopSort(pair *p, int n_pair, file *result){
- •Void AddToTail(mains *head, mains *V){
- •5.5. Стек свободного пространства
- •Void DeleteNode(node *p, node *s){
- •5.6. Обслуживание свободного пространства
- •5.6.1. Счетчик ссылок
- •5.6.2. Сбор мусора
- •Контрольные вопросы
- •6. Множества
- •Int nElem; // число элементов в множестве
- •Int Elem[maxsize]; // элементы множества
- •Int Element; // номер элемента множества
- •Void Delete(node *p); // удаление узла вслед за p
- •Void setinlist::Delete(node *p){
- •Контрольные вопросы
- •7. Деревья
- •7.1. Бинарные деревья
- •7.2. Обход бинарного дерева
- •Void DirectByPass(node *Root){
- •Void InverseByPass(node *Root){
- •Int Tag; // может принимать значения operation или number
- •7.3. Прошитые деревья
- •Void InverseBypass(node *Root){
- •7.4. Другие представления бинарных деревьев
- •7.5. Представление деревьев общего вида
- •Int nSon; // действительное число сыновей узла
- •7.5.1. Представление деревьев общего вида бинарными деревьями
- •Контрольные вопросы
- •8. Конечный автомат
- •Int State; // текущее состояние
- •Int Class;
- •If(!Found){
- •Контрольные вопросы
- •9. Таблицы
- •9.1. Последовательные таблицы
- •Контрольные вопросы
- •9.2. Сортированные таблицы
- •9.2.1. Алгоритмы поиска в сортированной таблице
- •9.2.1.1. Бинарный поиск (дихотомия)
- •Int BinSearch(int Key, int n, int t[]){
- •Void *bsearch(const void *key, const void *base, size_t nelem, size_t width, int (*fcmp)(const void *a, const void *b ));
- •9.2.2. Вставка и удаление в сортированной таблице
- •9.2.3. Оценка трудоемкости сортировки !!!!!
- •9.2.4. Внутренняя сортировка
- •9.2.4.1. Сортировка подсчетом
- •Void CountSort(int n, int t[]){
- •9.2.4.2. Сортировка простым выбором
- •Void SimpleChoice(int n, int t[]){
- •9.2.4.3. Квадратичный выбор
- •9.2.4.4. Выбор из дерева
- •9.2.4.5. Сортировка простыми вставками
- •Void InsertSort(int n, int t[]){
- •9.2.4.6. Сортировка методом "пузырька"
- •Void BubbleSort(int n, int t[]){
- •9.2.4.7. Сортировка слиянием
- •Void Merge(int n, int *t, int m, int *V, int *r){
- •9.2.4.8. Сортировка фон Неймана
- •Void Join(int a[], int b[], int *left, int *right,
- •Int *kl, int *kr, int Step){
- •9.2.4.9. Сортировка Хоара (1962 г.) !!!!!
- •Int Partition(int m, int n, int t[]){
- •Void Hoar(int m, int n, int t[]){
- •Void qsort(void *base, size_t nelem, size_t width,
- •Int (*fcmp)(const void *, const void *));
- •9.2.4.10. Двоичная поразрядная сортировка
- •Int BitPart(unsigned int Left, unsigned int Right,
- •Void BitSort(unsigned int Left, unsigned int Right,
- •Void BinarySort(int n,unsigned Tab[], unsigned int keylen){
- •9.2.4.11. Цифровая поразрядная сортировка
- •Void DigitalSort(byte *t, int n, int KeyLen){
- •Int *Count;
- •Int *Pos; // позиции расстановки
- •9.2.1. Внешняя сортировка
- •9.2.1.1. Многопутевое слияние и выбор с замещением
- •9.2.1.2. Многофазное слияние
- •9.2.1.3. Фибоначчиево слияние
- •9.2.1.4. Каскадное слияние
- •9.2.1.5. Сортировка в одном файле
- •Контрольные вопросы
- •9.3. Древовидные таблицы
- •Void *Record; // указатель на запись таблицы
- •Int WhatSon; // каким сыном устанавливать новую запись –
- •Int CmpKeys; // результат сравнения ключей
- •Int Info;
- •Int Rank; // для доступа по индексу
- •9.3.1. Оценка трудоемкости поиска в случайном дереве
- •9.3.2. Оптимальные деревья
- •Int Info;
- •9.3.3. Сбалансированные деревья
- •9.3.4.1. Поддержание балансировки
- •9.3.5. Представление линейных списков деревьями
- •Int Info;
- •Int Rank;
- •Контрольные вопросы
- •9.4. Таблицы с прямым доступом
- •9.5. Рассеянные таблицы (Hash)
- •9.5.1. Анализ трудоемкости операций над рассеянной таблицей
- •Контрольные вопросы
- •Литература
- •454091, Г.Челябинск, ул.Свободы, 155/1
9.2.1.4. Каскадное слияние
Каскадное слияние, подобно многофазному, начинается с точного распределения отрезков по лентам, хотя правила распределения другие. В качестве примера рассмотрим слияние, использующее 6 файлов. Каждая строка в таблице, приведенной ниже, представляет полный проход по всем данным.
№ прохода |
F1 |
F2 |
F3 |
F4 |
F5 |
F6 |
Всего отрезков |
1 |
55*1 |
50*1 |
41*1 |
29*1 |
15*1 |
- |
190 |
2 |
- |
5*1 |
9*2 |
12*3 |
14*4 |
15*5 |
190 |
3 |
5*15 |
4*14 |
3*12 |
2*9 |
1*5 |
- |
190 |
4 |
- |
1*15 |
1*29 |
1*41 |
1*50 |
1*55 |
190 |
5 |
1*190 |
- |
- |
- |
- |
- |
190 |
Проход 2, например, поучается выполнением 5-путеврго слияния с F1…F5 на F6, пока не опустеет F5, затем 4-путевого слияния с F1…F4 на F5, 3-путевого с F1, F2, F3 на F4, 2-путевого с F1, F2 на F3, и, наконец, однопутевого (копирования) – с F1 на F2. Подробно второй проход представлен в таблице:
Слияние |
F1 |
F2 |
F3 |
F4 |
F5 |
F6 |
исходно |
55*1 |
50*1 |
41*1 |
29*1 |
15*1 |
- |
5-путевое |
40*1 |
35*1 |
26*1 |
14*1 |
- |
15*5 |
4-путевое |
26*1 |
21*1 |
12*1 |
- |
14*4 |
|
3-путевое |
14*1 |
9*1 |
- |
12*3 |
|
|
3-путевое |
5*1 |
- |
9*2 |
|
|
|
копирование |
- |
5*1 |
|
|
|
|
Ясно, что операция копирования излишня и оставлена в описании алгоритма только для сохранения единообразия процесса.
Рассматривая процесс в обратном порядке, и игнорируя выходной файл, можно вывести точные распределения отрезков по файлам на любом этапе:
Уровень |
F1 |
F2 |
F3 |
F4 |
F5 |
0 |
1 |
0 |
0 |
0 |
0 |
1 |
1 |
1 |
1 |
1 |
1 |
2 |
5 |
4 |
3 |
2 |
1 |
3 |
15 |
14 |
12 |
9 |
5 |
4 |
55 |
50 |
41 |
29 |
15 |
. |
. |
. |
. |
. |
. |
n |
an |
bn |
cn |
dn |
en |
N+1 |
an+bn+cn dn+en |
an+bn +cn+dn |
an+bn+cn |
an+bn |
an |
Числа в распределении носят название каскадных.