Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
statisticheskoe_otsenivanie_i_gipoteza.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
279.55 Кб
Скачать

Доверительный интервал для математического ожидания нормального распределения при неизвестной дисперсии

Пусть количественный признак X генеральной совокупности распределен нормально, причем среднее квадратическое отклонение  этого распределения неизвестно. Требуется оценить неизвестное математическое ожидание с помощью доверительных интервалов.

Оказывается, что по данным выборки можно построить случайную величину , которая имеет распределение Стьюдента с степенями свободы. В последнем выражении – – выборочное среднее, – исправленное среднее квадратическое отклонение, – объем выборки; возможные значения случайной величины T мы будем обозначать через t. Плотность распределения Стьюдента имеет вид:

,

где некоторая постоянная, выражающаяся через гамма–функции. Как видно, распределение Стьюдента определяется параметром n – объемом выборки (или, что то же самое – числом степеней свободы ) и не зависит от неизвестных параметров . Поскольку – четная функция от t , то вероятность выполнения неравенства определяется следующим образом:

.

Заменив неравенство в круглых скобках двойным неравенством, получим выражение для искомого доверительного интервала:

Итак, с помощью распределения Стьюдента найден доверительный интервал , покрывающий неизвестный параметр a с надежностью . По таблице распределения Стьюдента и заданным n и можно найти , и, используя найденные по выборке и , можно определить доверительный интервал.

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=16 найдены генеральное среднее и исправленное среднее квадратическое отклонение . Требуется оценить неизвестное математическое ожидание при помощи доверительного интервала с надежностью 0,95.

Решение. Найдем по таблице распределения Стьюдента, используя значения . Этот параметр оказывается равным 2,13. Найдем границы доверительного интервала:

.

То есть с надежностью 0,95 неизвестный параметр a заключен в доверительном интервале .

Можно показать, что при возрастании объема выборки n распределение Стьюдента стремится к нормальному. Поэтому практически при n>30 можно вместо него пользоваться нормальным распределением. При малых n это приводит к значительным ошибкам.

Доверительный интервал для оценки среднего квадратического отклонения  нормального распределения

Пусть количественный признак X генеральной совокупности распределен нормально и требуется оценить неизвестное генеральное среднее квадратическое отклонение  по исправленному выборочному среднему квадратическому отклонению s. Найдем доверительные интервалы, покрывающие параметр  с заданной надежностью .

Потребуем, чтобы выполнялось соотношение:

или .

Преобразуем двойное неравенство в равносильное неравенство и обозначим /s=q. Имеем:

(A)

и необходимо найти q. С этой целью введем в рассмотрение случайную величину .

Оказывается, величина распределена по закону с n–1 степенями свободы. Плотность распределения  имеет вид:

Это распределение не зависит от оцениваемого параметра , а зависит только от объема выборки n.

Преобразуем неравенство (A) так, чтобы оно приняло вид . Вероятность этого неравенства равна заданной вероятности , т.е. .

Предполагая, что q<1, перепишем (A) в виде:

,

далее, умножим все члены неравенства на :

или .

Вероятность того, что это неравенство, а также равносильное ему неравенство (A) будет справедливо, равна:

.

Из этого уравнения можно по заданным найти , используя имеющиеся расчетные таблицы. Вычислив по выборке и найдя по таблице , получим искомый интервал (A1), покрывающий  с заданной надежностью .

Пример. Количественный признак X генеральной совокупности распределен нормально. По выборке объема n=25 найдено исправленное среднее квадратическое отклонение s=0.8. Найти доверительный интервал, покрывающий генеральное среднее квадратическое отклонение  с надежностью 0,95.

Решение. Используя заданные значения , по таблице находим значение q=0.32. Искомый доверительный интервал есть:

.

Необходимо сделать замечание. Мы предполагали, что q<1. Если это не так, то мы придем к соотношениям:

.

Следовательно, значение q >1 может быть найдено из уравнения:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]