
- •1. Система, системные признаки, классификация систем.
- •2. Целостные и суммативные системы.
- •3. Моделирование как метод научного познания и подход к анализу и синтезу сложных систем.
- •4. Назначение моделирования и его место среди других наук.
- •5. Сложные системы как объекты моделирования.
- •6. Системный подход в моделировании сложных систем.
- •7. Модели: параметры и характеристики.
- •8. Адекватность моделей.
- •9. Виды моделей, иерархия моделей.
- •10. Характеристика и классификация абстрактных моделей.
- •11. Имитационные модели (общее описание).
- •12. Примеры математических моделей (анал. И имитационных).
- •13. Методы расчета математических моделей.
- •14. Харарактеристика имитационных методов расчета матем моделей.
- •15.Сравнительный анализ аналитических и имитационных моделей.
- •16.Классификация и характеристика типовых математических моделей.
- •17.Общая хар-ка q-моделей.
- •18. Общая характеристика обобщенных (агрегатных) моделей.
- •19. Технология моделирования. Основные этапы.
- •20. Концептуальные модели.
- •21. Формирование критериев при моделировании.
- •22. Планирование экспериментов с моделью
- •23. Общая характеристика метода статистических испытаний (Монте-Карло).
- •24. Примеры использования метода статистических испытаний.
- •25. Стохастические сетевые модели: параметры и характеристики.
- •26. Сети массового обслуживания: параметры, характеристики, классификация.
- •27.Теоретические основы статич моделирования
- •28.Выбор длительности машинного эксперимента.
- •29.Оценка результатов имитационного моделирования: статические оценки и доверительные интервалы
- •31.Псевдослучайные числа и их использование в моделировании.
- •32.Алгоритмические способы генерации псевдослучаных чисел.
- •33.Моделир-е случайных событий, групп событий.
- •34.Моделирование зависимых и независ событий.
- •35. Моделирование дискретных случайных величин
- •36.Моделирование непрерывных случайных величин.
- •37.Метод обратных функций.
- •38. Моделирование случайных векторов(для случая двухмерных случайных величин)
- •39.Генерация типовых распределений (равномерного, показательного, гаусса и др.)
- •40.Основные задачи имитационного моделирования
- •41.Оценка характеристик моделирования объекта, по результатам статистического моделирования
- •42.Оценка характеристик нестационарного объекта по результатам статистическ моделирования.
- •43. Типовая структура имитационной модели
- •44. Компоненты, функциональные действия, активности и события
- •45. Порядок функционирования имитационной модели
- •4 6. Методы продвижения модельного времени
- •47. Алгоритм и особенности моделирования нестационарных объектов.
- •48. Общая характеристика и сравнительный анализ методов моделирования псевдопараллельностей.
- •49. Псевдопараллельность: смысл и способы реализации.
- •50. Моделирование активностей.
- •52. Укрупненный алгоритм имитационного моделирования одноканальной смо.
- •53. Программные средства имитационного моделирования.
- •54. Аппаратные средства имитационного моделирования.
- •55. Состав системы моделирования gpss.
- •56. Состояния транзактов и узлов. Списки gpss.
- •57. Укрупненный алгоритм обработки событий в языке gpss.
- •58. Укрупненный алгоритм продвижения тразактов в языке gpss.
- •60. Характеристика входного языка системы gpss.
- •61. Стандартный набор статистики gpss. Управление сбором статистики.
- •62. Управление сбором статистики в gpss с помощью table, qtable.
- •63. Именование и адресация объектов в языке gpss
- •64. Вычислимые и хранимые объекты gpss.
- •65. Характеристика объектов языка gpss.
- •66. Управление приоритетными дисциплинами обслуживания в gpss.
- •67. Стандартные числовые атрибуты gpss. Назначение и использование.
- •68. Управление потоками транзактов в языке gpss.
- •69. Устройства и организация приоритетного обслуживания в gpss.
- •70. Управление узлом типа память в gpss. Описание многоканальных смо.
- •72. Управление маршрутами транзактов в языке gpss.
- •73. Использование операторов test, gate. Логические ключи.
- •74. Управление семействами транзактов в языке gpss.
- •75. Характеристика аналитических методов расчета математических моделей.
- •76. Математические модели сложных систем (общее описание).
- •77. Аналитическое решение математической модели.
- •78. Потоки заявок в стохастических сетевых моделях.
- •79. Типы смо, используемых в стохастических сетевых моделях.
- •80. Моделирование смо м/м/1 и м/м/к.
- •81. Моделирование смо м/м/1 и м/м/к.
- •82. Параметры и характеристики сетей мо.
- •83.Экспоненциальные сети мо.
- •84. Расчёт интенсивностей потоков и , сама сеть в соотв. Фициент мкнутой сети.0000000000000000000000000000000000000000000000000000000000000000000000000000000000000коэффициентов передач сетей мо.
- •85. Расчёт вероятностей состояний разомкнутых сетей мо.
- •86. Расчёт вероятностей состояний замкнутых сетей мо.
- •87. Моделирование узловых характеристик объекта на основе разомкнутых сетей мо.
- •88. Моделирование системных характеристик объекта на основе замкнутых сетей мо.
- •89. Моделирование узловых характеристик объекта на основе замкнутых сетей мо.
- •90. Общая методика моделирования объекта на основе разомкнутых сетей мо.
- •91. Общая методика моделирования объекта на основе замкнутых сетей мо.
- •92. Предельные оценки характеристик стохастических сетевых моделей
- •93. Моделирование систем обработки информации стохастическими сетями.
- •Система, системные признаки, классификация систем.
- •Целостные и суммативные системы.
- •Моделирование как метод научного познания и подход к анализу и синтезу сложных систем.
22. Планирование экспериментов с моделью
При испытании трудоемких моделей требуется планирование эксперимента. Цель планирования эксперимента – получить максимум полезной информации при минимальных затратах на проведение моделирования.
Затраты (временные) на моделирование зависят
- от числа испытаний на одном эксперименте (n)
- от количества экспериментов (r)
- от кол-ва прогонов (k) если система не стационарна.
Тактическое планирование – занимается тем, как уменьшить кол-во испытаний (n). Возможные подходы:
- теоретические расчеты длит. эксперим.
- методы уменьшения дисперсии
- отброс переходного периода.
Стратегическое планирование – работает с величиной r. Для этого в модели выделяются факторы (параметры) и они ранжируются по степени влияния. Затем из них выделяют первичные или наиболее важные. Для количественных факторов выявляют значения (уровни), для качественных величин формируются ранги; составляется факторный план.
Пример: модель включает 2 параметра
однофакторный план – 16 экспериментов, полнофакторный план - 60 экспериментов.
Рандомизированный план – случайным образом берутся p1 и p2.
Дробный факторный план – для каждого эксперимента берутся min и max.
23. Общая характеристика метода статистических испытаний (Монте-Карло).
Метод Монте-Карло основан на замене исходного объекта независимо от его природы случайными процессами, чьи характеристики (например, mx,Dx) совпадают с характеристиками объекта. Метод используется как для моделирования вероятностных так и детерминированных объектов (например, для решения моделей, описанных дифференциальными уравнениями в частных производных или n-кратными интегралами). Широко применяется для генерации случайных объектов (событий, процессов) с заданными вероятностными характеристиками, необходимых для организации имитационного моделирования.
Достоинства метода: - инвариантность к объекту исследования, однотипность схемы организации моделирования и соответственно универсальность применения; - сравнительно низкая трудоёмкость, так как сами вычисления, как правило, однотипны и относительно несложны, а их объёмы зависят от точности почти линейно.
Общая схема применения метода включает: подбор и замену объекта адекватной вероятностной схемой (моделью), характеристики которой совпадают с вычисляемыми характеристиками объекта; выполнение вычислений по схеме необходимое количество раз и накопление статистических данных; выполнение статистической обработки результатов и их оценки.
24. Примеры использования метода статистических испытаний.
Пример 1 Объект – нерегулируемый перекресток, событие – одновременное появление транспортных средств с пересекающимися маршрутами.
Пусть известен закон распределения времени появления трансп. средства по каждой из пересекающихся улиц: fτ и ft. Тогда при моделировании мы заменяем объект двумя случ. процессами: поток с распределением fτ и поток с распределением ft.
В – обрабатывает ti и τi. Если ti = τi, то в С – счетчик событий добавляется 1, если они не совпадают, то миним. значение отбрасывается и берется следующее значение от этого же генератора. Процедура повторяется нужное кол-во раз.
После завершения эксперимента накопленное в счетчике значение делится на кол-во экспериментов k/n – это и есть вероятность события.