
- •Контрольные вопросы
- •18.Множества. Основные понятия
- •29.Комбинаторика Правило умножения
- •30.Комбинаторика Правило суммы
- •35.Функции и их свойства
- •2.Действия над матрицами Равенство матриц
- •Сложение матриц
- •Умножение матрицы на число
- •Произведение матриц
- •3. Сложение матриц
- •4.Умножение матрицы на число
- •5. Произведение матриц
- •6.Транспонирование матриц
- •7.Определители второго порядка и их свойства
- •8.Определители высших порядков
- •9.Свойства определителей
- •10. Обратная матрица
- •11.Элементарные преобразования матриц
- •12.Ранг матрицы
- •13.Свойства ранга матрицы
- •14.Метод окаймления
- •15.Система линейных уравнений
- •16.Решение системы линейных уравнений матричным методом
- •17.Формулы Крамера
- •18.Множества. Основные понятия
- •19.Операции над множествами
- •20.Тождества теории множеств.
- •21.Множество n натуральных чисел
- •23.Счетные и несчетные множества .
- •Свойства
- •Связанные понятия
- •Примеры Счётные множества
- •Несчётные множества
- •24..Множество q рациональных чисел
- •Множество рациональных чисел
- •Свойства Основные свойства
- •Дополнительные свойства
- •25..Множество j иррациональных чисел
- •26.Множество r действительных чисел Вещественное число
- •27.Системы счисления
- •Позиционные системы счисления
- •Факториальная система счисления в факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:
- •Система счисления Штерна–Броко
- •Системы счисления разных народов Единичная система счисления
- •Древнеегипетская система счисления
- •Система счисления майя
- •Кипу инков
- •28.Правила перевода чисел из одной системы счисления в другую
- •29.Комбинаторика Правило умножения
- •30.Комбинаторика Правило суммы
- •31.Формулы включения-исключения Формулы включения-исключения
- •32.Перестановки и размещения
- •33.Сочетания
- •34.Бином Ньютона
- •Биномиальные многочлены
- •Биномиальная группа
- •35.Функции и их свойства
- •36.Понятие числовой функции
- •График функции
- •Примеры
- •Способы задания функции
- •Аналитический способ
- •Табличный способ
- •Графический способ
- •Рекурсивный способ
- •Словесный способ
- •Классы числовых функций
- •37.Основные свойства функции Свойства функции
- •38.Схема исследования основных свойств функции Общая схема исследования функции и построения её графика
- •40.Сложная функция
- •41.Корни алгебраических уравнений
Система счисления Штерна–Броко
Система счисления Штерна–Броко — способ записи положительных рациональных чисел, основанный на дереве Штерна–Броко.
Системы счисления разных народов Единичная система счисления
По-видимому, хронологически первая система счисления каждого народа, овладевшего счётом. Натуральное число изображается путём повторения одного и того же знака (чёрточки или точки). Например, чтобы изобразить число 26, нужно провести 26 чёрточек (или сделать 26 засечек на кости, камне и т.д.). Впоследствии, ради удобства восприятия больших чисел, эти знаки группируются по три или по пять. Затем равнообъёмные группы знаков начинают заменяться каким-либо новым знаком - так возникают прообразы будущих цифр.
Древнеегипетская система счисления
Древнеегипетская десятичная непозиционная система счисления возникла во второй половине третьего тысячелетия до н. э. Для обозначения чисел 0, 1, 10, 10², 10³, 104, 105, 106, 107 использовались специальные цифры. Числа в египетской системе счисления записывались как комбинации этих цифр, в которых каждая из цифр повторялась не более девяти раз. Значение числа равно простой сумме значений цифр, участвующих в его записи.
Вавилонская система счисления
Основная статья: Шестидесятеричная система счисления
Алфавитные системы счисления
Основная статья: Алфавитная запись чисел
Алфавитными системами счисления пользовались древние армяне, грузины, греки (ионическая система счисления), арабы (абджадия), евреи (см. гематрия) и другие народы Ближнего Востока. В славянских богослужебных книгах греческая алфавитная система была переведена на буквы кириллицы.
Еврейская система счисления
Еврейская система счисления в качестве цифр использует 22 буквы еврейского алфавита. Каждая буква имеет своё числовое значение от 1 до 400 (см. т. ж. Гематрия). Ноль отсутствует. Цифры, записанные таким образом, наиболее часто можно встретить в нумерации лет по иудейскому календарю.
Римская система счисления
Основная статья: Римские цифры
Каноническим примером почти непозиционной системы счисления является римская, в которой в качестве цифр используются латинские буквы: I обозначает 1, V — 5, X — 10, L — 50, C — 100, D — 500, M — 1000
Например, II = 1 + 1 = 2 здесь символ I обозначает 1 независимо от места в числе.
На самом деле, римская система не является полностью непозиционной, так как меньшая цифра, идущая перед большей, вычитается из неё, например:
IV = 4, в то время как: VI = 6
Система счисления майя
Основная статья: Цифры майя
Майя использовали 20-ричную систему счисления за одним исключением: во втором разряде было не 20, а 18 ступеней, то есть за числом (17)(19) сразу следовало число (1)(0)(0). Это было сделано для облегчения расчётов календарного цикла, поскольку (1)(0)(0) = 360 примерно равно числу дней в солнечном году.
Для записи основными знаками были точки (единицы) и отрезки (пятёрки).
Кипу инков
Прообразом баз данных, широко использовавшихся в Центральных Андах (Перу, Боливия) в государственных и общественных целях в I—II тысячелетии н. э., была узелковая письменность Инков — кипу, состоявшая как из числовых записей десятичной системы, так и не числовых записей в двоичной системе кодирования. В кипу применялись первичные и дополнительные ключи, позиционные числа, кодирование цветом и образование серий повторяющихся данных. Кипу впервые в истории человечества использовалось для применения такого способа ведения бухгалтерского учёта как двойная запись