
- •Контрольные вопросы
- •18.Множества. Основные понятия
- •29.Комбинаторика Правило умножения
- •30.Комбинаторика Правило суммы
- •35.Функции и их свойства
- •2.Действия над матрицами Равенство матриц
- •Сложение матриц
- •Умножение матрицы на число
- •Произведение матриц
- •3. Сложение матриц
- •4.Умножение матрицы на число
- •5. Произведение матриц
- •6.Транспонирование матриц
- •7.Определители второго порядка и их свойства
- •8.Определители высших порядков
- •9.Свойства определителей
- •10. Обратная матрица
- •11.Элементарные преобразования матриц
- •12.Ранг матрицы
- •13.Свойства ранга матрицы
- •14.Метод окаймления
- •15.Система линейных уравнений
- •16.Решение системы линейных уравнений матричным методом
- •17.Формулы Крамера
- •18.Множества. Основные понятия
- •19.Операции над множествами
- •20.Тождества теории множеств.
- •21.Множество n натуральных чисел
- •23.Счетные и несчетные множества .
- •Свойства
- •Связанные понятия
- •Примеры Счётные множества
- •Несчётные множества
- •24..Множество q рациональных чисел
- •Множество рациональных чисел
- •Свойства Основные свойства
- •Дополнительные свойства
- •25..Множество j иррациональных чисел
- •26.Множество r действительных чисел Вещественное число
- •27.Системы счисления
- •Позиционные системы счисления
- •Факториальная система счисления в факториальной системе счисления основаниями являются последовательность факториалов , и каждое натуральное число представляется в виде:
- •Система счисления Штерна–Броко
- •Системы счисления разных народов Единичная система счисления
- •Древнеегипетская система счисления
- •Система счисления майя
- •Кипу инков
- •28.Правила перевода чисел из одной системы счисления в другую
- •29.Комбинаторика Правило умножения
- •30.Комбинаторика Правило суммы
- •31.Формулы включения-исключения Формулы включения-исключения
- •32.Перестановки и размещения
- •33.Сочетания
- •34.Бином Ньютона
- •Биномиальные многочлены
- •Биномиальная группа
- •35.Функции и их свойства
- •36.Понятие числовой функции
- •График функции
- •Примеры
- •Способы задания функции
- •Аналитический способ
- •Табличный способ
- •Графический способ
- •Рекурсивный способ
- •Словесный способ
- •Классы числовых функций
- •37.Основные свойства функции Свойства функции
- •38.Схема исследования основных свойств функции Общая схема исследования функции и построения её графика
- •40.Сложная функция
- •41.Корни алгебраических уравнений
27.Системы счисления
Система счисле́ния — символический метод записи чисел, представление чисел с помощью письменных знаков.
Система счисления:
даёт представления множества чисел (целых и/или вещественных);
даёт каждому числу уникальное представление (или, по крайней мере, стандартное представление);
отражает алгебраическую и арифметическую структуру чисел.
Системы счисления подразделяются на позиционные, непозиционные и смешанные.
Позиционные системы счисления
Основная статья: Позиционная система счисления
В позиционных системах счисления один и тот же числовой знак (цифра) в записи числа имеет различные значения в зависимости от того места (разряда), где он расположен. Изобретение позиционной нумерации, основанной на поместном значении цифр, приписывается шумерам и вавилонянам; развита была такая нумерация индусами и имела неоценимые последствия в истории человеческой цивилизации. К числу таких систем относится современная десятичная система счисления, возникновение которой связано со счётом на пальцах. В средневековой Европе она появилась через итальянских купцов, в свою очередь заимствовавших её у мусульман.
Под позиционной
системой счисления обычно понимается
-ричная
система счисления, которая определяется
целым
числом
,
называемым основанием
системы счисления. Целое число без знака
в
-ричной
системе счисления представляется в
виде конечной линейной
комбинации
степеней числа
:
,
где
—
это целые числа, называемые цифрами,
удовлетворяющие неравенству
.
Каждая степень
в
такой записи называется весовым
коэффициентом разряда.
Старшинство разрядов и соответствующих
им цифр определяется значением показателя
(номером
разряда). Обычно, в ненулевых числах
,
левые нули опускаются.
Если не возникает разночтений (например, когда все цифры представляются в виде уникальных письменных знаков), число записывают в виде последовательности его -ричных цифр, перечисляемых по убыванию старшинства разрядов слева направо:
Например, число сто три представляется в десятичной системе счисления в виде:
Наиболее употребляемыми в настоящее время позиционными системами являются:
1 — единичная[1] (счёт на пальцах, зарубки, узелки «на память» и др.);
2 — двоичная (в дискретной математике, информатике, программировании);
3 — троичная;
8 — восьмеричная;
10 — десятичная (используется повсеместно);
12 — двенадцатеричная (счёт дюжинами);
13 — тринадцатеричная;
16 — шестнадцатеричная (используется в программировании, информатике);
60 — шестидесятеричная (единицы измерения времени, измерение углов и, в частности, координат, долготы и широты).
В позиционных системах чем больше основание системы, тем меньшее количество разрядов (то есть записываемых цифр) требуется при записи числа.
Смешанные системы счисления
Смешанная система
счисления
является обобщением
-ричной
системы счисления и также зачастую
относится к позиционным системам
счисления. Основанием смешанной системы
счисления является возрастающая
последовательность
чисел
,
и каждое число
в
ней представляется как линейная
комбинация:
,
где на коэффициенты
,
называемые как и прежде цифрами,
накладываются некоторые ограничения.
Записью числа в смешанной системе счисления называется перечисление его цифр в порядке уменьшения индекса , начиная с первого ненулевого.
В зависимости от
вида
как
функции от
смешанные
системы счисления могут быть степенными,
показательными
и т. п. Когда
для
некоторого
,
смешанная система счисления совпадает
с показательной
-ричной
системой счисления.
Наиболее известным
примером смешанной системы счисления
является представление времени в виде
количества суток, часов, минут и секунд.
При этом величина «
дней,
часов,
минут,
секунд»
соответствует значению
секунд.