
- •Российский государственный аграрный заочный университет
- •Лекция 1 точка, прямая и плоскость на комплексном чертеже. Методы проецирования.
- •1.1. Предмет начертательной геометрии
- •Например: h − горизонтальный след прямой (линии) а;
- •1.2. Из истории начертательной геометрии
- •1.3. Центральное и параллельное проецирование
- •1.4. Инвариантные свойства параллельного проецирования
- •1.5 Ортогональное проецирование
- •1.6. Система трех плоскостей проекций. Эпюр Монжа.
- •Лекция 2 точка, прямая и плоскость на комплексном чертеже
- •2.1. Ортогональные проекции точки и прямой.
- •2.2. Частные случаи расположения прямой в пространстве
- •2.3 Следы прямой линии
- •2.5. Частные случаи расположения плоскостей в пространстве
- •2.6. Следы плоскости
- •Лекция 3 взаимное расположение геометрических элементов. Основные позиционные задачи
- •3.1. Определение позиционных задач
- •3.2. Метод конкурирующих точек
- •3.3. Прямая и точка
- •3.4. Взаимное положение прямых
- •Параллельные прямые
- •Скрещивающиеся прямые
- •3.5. Прямая и точка в плоскости
- •3.6. Взаимное положение прямой и плоскости
- •3.7. Пересечение плоскостей
- •Лекция 4 перпендикулярность прямых и плоскостей. Метрические задачи
- •4.1 Условие перпендикулярности двух прямых на комплексном чертеже
- •4.2. Условие перпендикулярности прямой к плоскости
- •4.3. Условие перпендикулярности плоскостей
- •4.4. Определение действительной длины отрезка и углов наклона его к плоскостям проекций
- •4.5. Линия наибольшего наклона (ската)
- •5.1. Необходимость преобразований комплексного чертежа.
- •6.1. Общие положения
- •6.2. Задачи на определение расстояний между геометрическими фигурами
- •6.4. Задачи на построение в плоскости общего положения геометрических фигур по заданным
- •7.1. Понятия и определения
- •Аналитический - при помощи уравнений;
- •При помощи каркаса;
- •3. Кинематический, т. Е. Перемещением линий в пространстве.
- •7.2. Линейчатые поверхности.
- •1) Развертывающиеся поверхности;
- •2) Неразвертывающиеся, или косые поверхности.
- •7.3. Неразвертывающиеся (косые) линейчатые поверхности.
1.4. Инвариантные свойства параллельного проецирования
Геометрические фигуры в общем случае проецируются на плоскость проекций с искажением. Проекции не сохраняют линейные и угловые величины оригинала. Характер искажений зависит от положения геометрической фигуры в пространстве, от аппарата проецирования и от положения плоскости проекций.
Однако некоторые геометрические свойства фигур остаются неизменными в процессе проецирования. Такие свойства геометрических фигур называются независимыми или инвариантными для данного аппарата проецирования.
Рассмотрим основные инвариантные свойства параллельного проецирования.
Проекция точки есть точка
Это очевидно из самого определения проекции как точка пересечения проецирующей прямой с плоскостью.
Проекция прямой есть прямая (рис. 1.6)
Рис. 1.6. Инвариантные свойства 2, 3, 4
Все проецирующие прямые, проходящие через точки прямой а параллельно направлению проецирования S, образуют проецирующую, или лучевую, плоскость .
Проекция прямой а на плоскость 1 определяется как линия пересечения этой лучевой плоскости с плоскостью 1, т. е. прямая
Если точка К принадлежит прямой а, то и проекция этой точки
принадлежит проекции прямой (рис. 1.6)
Это свойство следует непосредственно из определения проекции геометрической фигуры как множества проекций всех точек.
Если точка К принадлежит прямой а и плоскости , то и проецирующий луч lК принадлежит плоскости . Следовательно, этот луч пересечет плоскость 1 в линии пересечения плоскостей и 1, т. е. в точке К1, принадлежащей проекции прямой а1.
Если точка К делит отрезок АD в отношении m : n то и проекция
этой точки делит в таком же отношении проекцию этого отрезка (рис. 1.6):
Фигура ADD1A1 – трапеция. Прямая КК1 параллельна основаниям трапеции АА1 и DD1, следовательно делит ее стороны АD и А1D1 на пропорциональные части.
Проекция точки пересечения прямых есть точка пересечения проек
ций этих прямых (рис. 1.7)
Рис. 1.7. Пример инвариантного свойства 5
Действительно, точка К принадлежит одновременно прямым АВ и CD. По третьему инвариантному свойству проекция этой точки К1 должна принадлежать проекциям этих прямых, т. е. должна являться точкой пересечения этих проекций.
6. Проекции параллельных прямых параллельны (рис. 1.8)
Рис. 1.8. Пример инвариантного свойства 6
Лучевые плоскости и , проходят через параллельные прямые АВ и CD. Они параллельны, т.к. две пересекающиеся прямые одной плоскости параллельны двум пересекающимся прямым другой плоскости (АВ CD и АА1 СС1). Но две параллельные плоскости пересекаются с третьей по параллельным прямым, следовательно, А1В1 С1D1.
7. Плоский многоугольник в общем случае проецируется в многоугольник с тем же числом вершин.
И
сключение
составляет многоугольник (плоская
ломаная или кривая линия) расположенный
в проецирующей (лучевой) плоскости.
Такой многоугольник проецируется в
прямую линию (рис. 9).
Рис. 1.9. Примеры инвариантных свойств 7, 8
8. Прямая, параллельная направлению проецирования, проецируется в точку (рис. 1.9)
9. Проекция плоской фигуры, параллельной плоскости проекций, конгруэнтна этой фигуре (рис. 1.10).
Следствия этого инвариантного свойства следующие:
Проекция отрезка прямой, параллельной плоскости проекций,
конгруэнтна и параллельна самому отрезку (рис. 1.10):
Проекция угла, стороны которого параллельны плоскости проекций,
конгруэнтна этому углу (рис. 1.10)
Рис. 1.10. Пример инвариантного свойства 9 (следствия инвариантных свойств)