
- •Российская федерация министерство образования и науки
- •Билет № 1
- •Для графа, заданного симметричной матрицей расстояний:
- •Доказать тождество, используя только определения операций над множествами:
- •Следующие данные определяют ориентированный граф, пропускные способности дуг и заданный на графе поток:
- •Доказать тождество, используя только определения операций над множествами: .
- •Граф задан матрицей весов. Построить дерево кратчайших расстояний из 1 вершины.
- •Граф задан матрицей весов. Построить матрицу кратчайших расстояний.
- •Граф задан матрицей весов. Построить минимальный остов.
- •Граф задан матрицей весов. Построить минимальный остов.
- •Зав. Кафедрой по Захарова и.Г.
- •Граф задан матрицей весов. Построить дерево кратчайших расстояний из 1 вершины.
- •Граф задан матрицей весов. Построить дерево кратчайших расстояний из 1 вершины.
- •Для графа, заданного матрицей весов построить дерево кратчайших расстояний:
- •Доказать тождество, используя только определения операций над множествами:
- •Для графа, заданного матрицей весов построить минимальный остов:
- •Доказать тождество, используя только определения операций над множествами:
- •Для графа, заданного матрицей весов, построить матрицу кратчайших расстояний:
- •Для графа, заданного матрицей весов, построить минимальный остов:
- •Доказать тождество, используя только определения операций над множествами: .
- •Для графа, заданного матрицей весов построить матрицу кратчайших расстояний:
- •Для графа, заданного матрицей весов построить дерево кратчайших расстояний:
- •Зав. Кафедрой по Захарова и.Г.
- •Для графа, заданного матрицей весов построить минимальный остов:
- •Для графа, заданного матрицей весов построить дерево кратчайших расстояний:
- •Зав. Кафедрой по Захарова и.Г.
- •Для графа, заданного матрицей весов построить матрицу кратчайших расстояний:
- •Для графа, заданного матрицей весов построить минимальный остов:
- •Зав. Кафедрой по Захарова и.Г.
- •Для графа, заданного матрицей весов построить матрицу кратчайших расстояний:
- •Для графа, заданного матрицей весов построить дерево кратчайших расстояний:
- •Доказать тождество, используя только определения операций над множествами:
- •Для графа, заданного матрицей весов построить минимальный остов:
- •Доказать тождество, используя только определения операций над множествами: .
- •Для графа, заданного матрицей весов построить дерево кратчайших расстояний:
- •Для графа, заданного матрицей весов построить матрицу кратчайших расстояний:
- •Для графа, заданного матрицей весов построить минимальный остов
- •Для графа, заданного матрицей весов построить минимальный остов
- •Доказать тождество, используя только определения операций над множествами:
- •Для графа, заданного матрицей весов построить минимальный остов
- •Доказать тождество, используя только определения операций над множествами:
- •Доказать тождество, используя только определения операций над множествами:
- •Доказать тождество, используя только определения операций над множествами: .
- •Доказать тождество, используя только определения операций над множествами:
- •Для графа, заданного матрицей весов построить дерево кратчайших расстояний:
- •Для графа, заданного матрицей весов построить минимальный остов:
- •Следующие данные определяют ориентированный граф, пропускные способности дуг и заданный на графе поток:
Упростить выражение:
.
Доказать, что множество рациональных чисел счётно. Доказать, что множество действительных чисел несчётно.
Имеется квадратная матрица размером 10х10. Выбираются 10 элементов из нее так, чтобы никакие два из них не принадлежали одной линии; сколько таких наборов по 10 элементов можно составить?
Граф задан матрицей весов. Построить минимальный остов.
|
2 |
|
7 |
8 |
|
5 |
9 |
2 |
|
5 |
6 |
8 |
3 |
1 |
4 |
|
5 |
|
3 |
1 |
4 |
2 |
7 |
7 |
6 |
3 |
|
1 |
9 |
4 |
5 |
8 |
8 |
1 |
1 |
|
9 |
|
7 |
|
3 |
4 |
9 |
9 |
|
9 |
8 |
5 |
1 |
2 |
4 |
|
9 |
|
5 |
9 |
4 |
7 |
5 |
7 |
8 |
5 |
|
Зав.
кафедрой ПО
Захарова
И.Г.
РОССИЙСКАЯ ФЕДЕРАЦИЯ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
Государственное образовательное учреждение высшего профессионального образования
Тюменский государственный университет
Институт математики, естественных наук и информационных технологий
Кафедра программного обеспечения
Дисциплина Дискретная математика Курс 1
Специальность Информационная безопасность Семестр 1
БИЛЕТ № 7
Сколькими способами можно раскрасить полный граф на 6 вершинах шестью цветами? (Два способа считаются различными, если некоторая вершина при одном способе имеет один цвет, а при другом способе – другой.)
Граф задан матрицей весов. Построить минимальный остов.
1
8
9
8
2
5
1
1
9
4
5
8
8
1
1
9
7
9
9
1
1
1
5
8
4
9
1
2
3
8
2
5
1
2
4
1
7
3
4
5
5
8
5
8
1
5
Из основных законов алгебры множеств получите следующие результаты:
Приведите пример двух различных транзитивных отношений на множестве .
Зав.
кафедрой ПО
Захарова
И.Г.
РОССИЙСКАЯ ФЕДЕРАЦИЯ
МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
Государственное образовательное учреждение высшего профессионального образования
Тюменский государственный университет
Институт математики, естественных наук и информационных технологий
Кафедра программного обеспечения
Дисциплина Дискретная математика Курс 1
Специальность Информационная безопасность Семестр 1
БИЛЕТ № 8
Из основных законов алгебры множеств получите следующие результаты: