- •Лекция 1. Введение. Основы теплотехники (2 часа)
- •1.1.Введение
- •1.2. Основные понятия технической термодинамики
- •1.3. Основные параметры состояния газа
- •1.4. Уравнение состояния идеального газа
- •1.5. Теплоемкость газов и газовых смесей
- •1.6. Законы термодинамики
- •Лекция 2. Водяной пар. Влажный воздух (2 часа)
- •2.1. Уравнение состояния реальных газов
- •2.2. Процесс парообразования
- •2.3. Параметры водяного пара
- •2.4. Влажный воздух
- •2.5. Параметры влажного воздуха
- •Лекция 3. Основы теории теплопередачи (2 часа)
- •3.1. Виды передачи теплоты
- •Теплопроводность;
- •3.2. Теплопроводность
- •3.3. Конвективный теплообмен
- •3.4. Теплообмен излучением
- •Лекция 4. Теоретические основы тепловлажностной обработки (2 часа)
- •4.1. Физико-химические процессы, проходящие в бетоне при тепловлажностной обработке
- •4.2. Режимы тепловлажностной обработки
- •4.3. Классификация установок для тепловлажностной обработки
- •Ямные камеры.
- •Вибропрокатные станы
- •Лекция 5. Установки периодического действия для тепловлажностной обработки бетонных и железобетонных изделий (6 часов)
- •5.1. Ямные камеры
- •5.2. Стенды формования и паропрогрева
- •5.3. Термоформы
- •5.4. Кассетные установки
- •5.5. Автоклавные установки
- •Лекция 6. Установки непрерывного действия (4 часа)
- •6.1. Горизонтальные пропарочные камеры щелевого типа
- •6.2. Полигональные пропарочные камеры щелевого типа
- •6.3. Пропарочные камеры с разным уровнем зон
- •6.4. Вертикальные пропарочные камеры.
- •6.5. Вибропрокатные станы
- •Лекция 7. Электротермообработка бетона (2 часа)
- •7.1. Общие положения
- •7.2. Электродный прогрев бетона
- •7.3. Контактный электрообогрев
- •7.4. Инфракрасный прогрев
- •7.5. Индукционный прогрев
- •Лекция 8. Топливо и процессы горения (4 часа)
- •8.1. Классификация топлива
- •7.2. Процесс горения топлива и принципы его сжигания
- •7.3. Виды теплоносителей
- •7.4. Получение теплоносителей
- •Лекция 8. Теоретические основы сушки (2 часа)
- •8.1. Влагосодержание материала
- •8.2. Тепло- и массообмен в процессе сушки
- •8.3. Периоды процесса сушки
- •8.4. Напряжения и деформации в процессе сушки.
- •8.5. Основные принципы расчета сушильного процесса
- •8.6. Влияние режимов сушки на качество материала
- •8.7. Классификация сушильных установок
- •Лекция 9. Сушилки для строительных материалов (2 часа)
- •9.1. Шахтные и газослоевые сушилки
- •9.2. Барабанные сушилки
- •9.3. Контактные сушилки
- •9.4. Конвейерные сушилки
- •9.5. Пневматические сушилки
- •Лекция 10. Установки для сушки изделий (2 часа)
- •10.1. Камерные сушилки
- •10.2. Тоннельные сушилки
- •10.3. Сушилки для листовых изделий
- •10.4. Сушилки с использованием электроэнергии, перегретого пара и жидкостей
- •Лекция 11. Теоретические основы высокотемпературных процессов обработки строительных материалов и изделий (2 часа)
- •11.1. Общие сведения
- •11.2. Обжиг вяжущих веществ
- •11.3. Обжиг керамических изделий
- •11.4. Процессы вспучивания и спекания
- •11.5. Процессы плавления
- •Лекция 12. Конструкции установок высокотемпературной обработки материалов и изделий (4 часа)
- •12.1. Классификация печей
- •12.2. Вращающиеся печи
- •12.3. Шахтные печи
- •12.4. Агломерационные машины
- •12.5. Печи для обжига керамических изделий
- •Рекомендуемая литература
1.2. Основные понятия технической термодинамики
Технической термодинамикой называется наука о свойствах тепловой энергии и законах взаимопреобразования тепловой и механической энергии. Техническая термодинамика положена в основу изучения и усовершенствования всех тепловых двигателей.
Как известно из практики, во взаимопреобразованни тепловой и механической энергии участвует рабочее тело. Как правило, это газообразные тела – газы и пары. Использование в качестве рабочего тела газов и паров объясняется тем, что они, обладая большим коэффициентом теплового расширения, могут при нагревании совершать гораздо большую работу, чем жидкости и твердые тела.
В термодинамике приняты два понятия о газе.
Реальными газами называют газы, молекулы которых обладают силами взаимодействия и имеют конечные, хотя и весьма малые, геометрические размеры.
Идеальными газами называют газы, молекулы которых не обладают силами взаимодействия, а сами молекулы представляют собой материальные точки с ничтожно малыми объемами.
Понятие об идеальном газе введено для упрощения изучения термодинамических процессов и получения более простых расчетных формул.
Водяной пар рассматривают как реальный газ, к которому нельзя применять законы, установленные для идеальных газов. Все реальные газы являются парами тех или иных жидкостей; при этом чем ближе газ к переходу в жидкое состояние, тем больше его свойства отклоняются от свойств идеального газа.
1.3. Основные параметры состояния газа
К основным параметрам состояния газов относятся: давление, температура и удельный объем.
Давление – сила, действующая на единицу площади поверхности тела перпендикулярно последней. Единица измерения 1 Па = 1 Н / 1 м2. Давление газа это средний результат силового воздействия большого числа молекул газа на внутреннюю поверхность сосуда, в котором заключен газ.
В технике различают абсолютное давление рабс, избыточное давление ризб и разрежение pв. Под абсолютным давлением подразумевается полное давление, под которым находится газ. Под избыточным давлением понимают разность между абсолютным давлением, большим, чем атмосферное, и атмосферным давлением. Разрежение (вакуум) характеризуется разностью между атмосферным давлением и абсолютным давлением, меньшим, чем атмосферное.
Взаимосвязь между данными видами давления газа выражается формулами (1.1, 1.2).
рабс = рб + ризб (1.1)
рабс = рб - рв (1.2)
где рб – атмосферное давление по барометру.
Приборы, служащие для измерения давления газа больше атмосферного, называются манометрами и показывают избыточное давление газа над атмосферным. В практике избыточное давление называют манометрическим давлением. Для измерения давления меньше атмосферного применяются вакуумметры, показывающие насколько давление газа ниже атмосферного.
Температура – параметр, характеризующий тепловое состояние тела. Температура тела, являясь мерой хаотического движения его молекул, определяет направление возможного самопроизвольного перехода теплоты от тела с большей температурой к телу с меньшей температурой.
В СНГ для измерения температур согласно ГОСТ 8.417–81 принята термодинамическая температура Кельвина (обозначение - T), используемая в системе СИ. Кроме температуры Кельвина, согласно СИ допускается применять также температуру Цельсия (обозначение - t).
Связь между температурой Цельсия и термодинамической температурой определяется выражениями:
t = Т - 273,15К (1.3)
Удельный объем. Молекулярно-кинетическая теория устанавливает понятие объема, занимаемого газом, как пространства, в котором перемещаются его молекулы. Объем газа измеряется в кубических метрах. Количество газа определяется его массой, выраженной в килограммах.
Удельный объем – объем единицы массы газа (v, м3/кг).
Плотность – масса газа заключенного в 1 м3 (, кг/м3).
v = V/G = 1/ (1.4)
Кроме рассмотренных основных параметров газа существуют и другие параметры состояния: энтропия S, внутренняя энергия U и энтальпия i.
