- •Семестр 2. Раздел 1. Архитектура эвм
- •Тема 6. Сетевые устройства: сетевые платы, сетевое оборудование 124
- •Тема 7. Параллельные архитектуры, графические процессоры. Языки cuda и OpenCl. Квантовые вычисления, днк-компьютеры, нанопроцессоры. 132
- •Тема 1. Архитектуры эвм. Принципы фон Неймана. Конвейеры. Тактовый генератор и резонаторы. Архитектура компьютера
- •Архитектура фон Неймана
- •Принципы фон Неймана
- •Гарвардская архитектура
- •Скалярный процессор
- •Векторный процессор
- •Вычислительный конвейер
- •[Править] Пузырек
- •Генератор тактовых импульсов
- •Кварцевый резонатор
- •Тема 2. Схема цпу, регистры, шины, мосты, чипсеты, слоты расширения, порты
- •Типовые структуры операционного блока микропроцессора
- •Системная шина микропроцессора
- •Принципы построения параллельного порта
- •Принципы построения последовательного порта
- •Синхронные последовательные порты
- •Асинхронные последовательные порты
- •Принципы построения микропроцессорных таймеров
- •Чипсеты современных компьютеров
- •Компоненты южного моста
- •Тема 3. Пзу, озу и способы их организации. Ассоциативная память (кэш). Пзу
- •Статические оперативные запоминающие устройства - озу (ram)
- •Кэширование, выполняемое операционной системой
- •Алгоритм работы кэша с отложенной записью
- •Алгоритм вытеснения
- •Политика записи при кэшировании
- •Кэширование интернет-страниц
- •Кэширование результатов работы
- •Тема 4. Накопители данных: накопители на жестких магнитных дисках, накопители на гибких магнитных дисках, накопители на магнитных лентах, оптические накопители, flash-память Жёсткий диск
- •Устройство
- •Гермозона
- •Устройство позиционирования
- •Блок электроники
- •Низкоуровневое форматирование
- •Геометрия магнитного диска
- •Адресация данных
- •Технологии записи данных
- •Метод продольной записи
- •Метод перпендикулярной записи
- •Метод тепловой магнитной записи
- •Накопитель на гибких дисках
- •Конструкция
- •Оптический диск
- •[Править] Некоторые параметры оптических дисков
- •Флеш-память
- •Принцип действия[1]
- •Nor и nand приборы
- •Slc и mlc приборы
- •[Править] Аудиопамять
- •[Править] Технологические ограничения
- •[Править] Специальные файловые системы
- •[Править] nand
- •Твердотельный накопитель
- •[Править] nand ssd
- •[Править] ram ssd
- •Тема 5. Устройства ввода и вывода данных: принтеры, сканеры, факс-модемы, мыши, клавиатуры, мониторы, электронная бумага Принтер
- •[Править] Классификация
- •[Править] Матричные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Струйные принтеры
- •[Править] Классификация
- •[Править] Сублимационные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Лазерные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Другие принтеры
- •[Править] Интернет-принтеры
- •[Править] История и принципы работы
- •[Править] Обзор современных технологий цифровой печати
- •[Править] Картридж принтера
- •[Править] Печатающая головка
- •Копировальный аппарат
- •История
- •Модуляция
- •[Править] Виды модуляции
- •[Править] Аналоговая модуляция
- •[Править] Цифровая модуляция
- •[Править] Импульсная модуляция
- •[Править] Развёртка
- •[Править] Модуляция
- •[Править] Каналы связи
- •[Править] Приём сигнала
- •[Править] Свёртка
- •[Править] Запись изображения
- •[Править] Запись информации
- •Компьютерная мышь
- •[Править]Трекболы
- •[Править]Сенсорные полоски и панели
- •Компьютерная клавиатура
- •Монитор (устройство)
- •Жк-дисплей
- •Электронная бумага
- •Тема 6. Сетевые устройства: сетевые платы, сетевое оборудование
- •Активное сетевое оборудование
- •Пассивное сетевое оборудование
- •[Править] Принцип работы
- •[Править] Таблица маршрутизации
- •[Править] Применение
- •Сетевой коммутатор
- •Сетевой концентратор
- •[Править] Упрощённое описание принципа работы
- •[Править] Характеристики сетевых концентраторов
- •Межсетевой экран
- •Другие названия
- •Разновидности сетевых экранов
- •[Править] Типичные возможности
- •Тема 7. Параллельные архитектуры, графические процессоры. Языки cuda и OpenCl. Квантовые вычисления, днк-компьютеры, нанопроцессоры. Квантовый компьютер
- •Теория [править] Кубиты
- •[Править] Вычисление
- •[Править] Алгоритмы
- •[Править] Квантовая телепортация
- •[Править] Применение квантовых компьютеров [править] Специфика применения
- •[Править] Приложения к криптографии
- •[Править] Физические реализации квантовых компьютеров
- •Транзисторы на нанотрубках
- •Графический процессор
- •Массово-параллельная архитектура
- •Многоядерный процессор
- •Hyper-threading
[Править] Запись информации
Всё большее распространение получает информационный способ приёма факсов — при нём происходит запись декодированной информации в виде графического файла на компьютер, файловый сервер или в память специализированного оборудования, где она хранится до запроса пользователя на визуализацию или печать.
Перечисленные программы позволяют принимать и отправлять факсы с ПК, оборудованного факс-модемом.
PamFax for Skype
Fax4Word
Fax4Outlook
Joy Fax Server
Joyfax Server
ActFax
VentaFax & Voice
Части современного офисного факс-аппарата
Сканер, в большинстве случаев — протяжного типа;
принтер с устройством подачи рулонной (реже — листовой) бумаги;
модем — модулятор-демодулятор электрического сигнала;
узлы телефонного аппарата — номеронабиратель, телефонная трубка
Современный факсовый аппарат в конкретном сеансе передачи факсимильного сообщения может выступать как приёмник или как передатчик.
По мере удешевления компьютерного оборудования и доступа к сети Интернет всё чаще для передачи изображений используется подключённый к сети компьютер общего назначения, имеющий принтер, сканер. Такой тип компьютеров по цели использования иногда носит отдельное название «Офисный компьютер». В ряде случаев использование такого компьютера именно в процессе передачи изображений также называют «факсимильной связью». Главным преимуществом перед традиционным факсом является отсутствие необходимости в синхронной и синфазной работе всех элементов тракта связи. Благодаря же создаваемым факс-гейтам точная граница между традиционной факсимильной связью и такой компьютерной отсутствует совершенно.
Виды изображений
Изображения, передаваемые в рамках факсимильной связи, так же как и факсимильные аппараты, подразделяются на три основные группы:
чёрно-белые — содержат две градации оптической плотности (обычно чёрный и белый цвета оригинала). к ним относят рукописи, чертежи, карты, изображения газетных полос и машинописный текст. Для представления яркости конкретного элемента изображения достаточно одного бита. Записываются с достаточной точностью и качеством любым из использовавшихся в факсимильной связи методов записи;
полутоновые — имеют несколько градаций плотности. Таковы, например, художественные фотографии, для воспроизведения которых необходимо иметь возможность передавать не менее 8—12 градаций оптической плотности. Приемлемое качество достигается только фотографическим способом передачи;
цветные — отличаются от полутонового изображения тем, что для передачи вместо одного канала оптической плотности используются три — R,G и B, причем полоса пропускания каждого равна полосе частот «черно-белого» факсимильного сигнала. Отсюда следует вывод, что для передачи цветного изображения требуется канал связи в 3 раза более широкий, чем для передачи полутонового изображения, либо время передачи увеличится втрое. В связи с этим в настоящее время цветные факсимильные аппараты, использующие «чистые» факсимильные технологии не применяются. На смену им пришли комбинированные устройства, использующие более совершенные способы сжатия изображения.
Развитие вычислительной техники и математического аппарата позволило «экономить» пропускную способность линий. Например, Canon Fax B215C осуществляет передачу ч/б изображений по стандартным факсовым протоколам MH, MR, MMR, JBIG, а цветных изображений со сжатием по стандарту JPEG. При этом время передачи цветной страницы составляет около 4 мин. для цветного изображения и 3 мин. для полутоновой изображения среднего качества.[источник не указан 409 дней]
Количественные показатели
Для сравнения традиционных систем факсимильной связи используются следующие параметры:
Размер передаваемого изображения. Существует два основных стандарта:
220×290 мм — размер, близкий формату A4 и используемый в делопроизводстве;
422×600 мм — размер для передачи газетных полос.
Скорость, измеряемая числом строк, передаваемых в минуту. Для телефонных и радиотелефонных линий связи установлены стандартные скорости 60, 120 и 250 строк в мин. Передача газетных полос ведётся со скоростями 178, 1500 или 2250 строк в мин.
Время передачи изображения зависит от скорости передачи и составляет: для формата 220×290 мм — от 6 до 25 мин; для газетной полосы — от 2,8 до 50 мин.
Чёткость, или разрешающая способность (в инструкциях к оборудованию иногда употребляется термин линеатура, однако это употребление неточно) — определяет качество воспроизведения мелких деталей изображения. Измеряется как максимальное количество линий, приходящихся на 1 мм (в Европе — на дюйм) длины строки, которые раздельно, не сливаясь, воспроизводятся приёмником. Значение чёткости в обычных факсимильных аппаратах — 5 линий на мм, а в аппаратуре для передачи газетных полос — от 13 до 16 линий на мм. В англоязычной литературе единица измерения — lpi (англ. lines per inch).
Число градаций — для полутоновых аппаратов: сколько градаций оптической плотности раздельно воспроизводятся на принятой копии.
Считается, что факсимильная связь вытесняется электронной почтой и иными средствами передачи файлов, однако ее роль в современном бизнесе уменьшается достаточно медленными темпами. Помимо удобства и простоты этого вида связи, значительную роль играет распространенность факсимильных аппаратов, возможность передачи цветных изображений, а также нежелание некоторых организаций переходить на иные методы связи, поскольку это потребует капитальных затрат и усилий на переподготовку персонала. Кроме того, современные факсы имеют возможность использовать обычную писчую бумагу взамен использовавшейся ранее специальной термобумаги.
