
- •Семестр 2. Раздел 1. Архитектура эвм
- •Тема 6. Сетевые устройства: сетевые платы, сетевое оборудование 124
- •Тема 7. Параллельные архитектуры, графические процессоры. Языки cuda и OpenCl. Квантовые вычисления, днк-компьютеры, нанопроцессоры. 132
- •Тема 1. Архитектуры эвм. Принципы фон Неймана. Конвейеры. Тактовый генератор и резонаторы. Архитектура компьютера
- •Архитектура фон Неймана
- •Принципы фон Неймана
- •Гарвардская архитектура
- •Скалярный процессор
- •Векторный процессор
- •Вычислительный конвейер
- •[Править] Пузырек
- •Генератор тактовых импульсов
- •Кварцевый резонатор
- •Тема 2. Схема цпу, регистры, шины, мосты, чипсеты, слоты расширения, порты
- •Типовые структуры операционного блока микропроцессора
- •Системная шина микропроцессора
- •Принципы построения параллельного порта
- •Принципы построения последовательного порта
- •Синхронные последовательные порты
- •Асинхронные последовательные порты
- •Принципы построения микропроцессорных таймеров
- •Чипсеты современных компьютеров
- •Компоненты южного моста
- •Тема 3. Пзу, озу и способы их организации. Ассоциативная память (кэш). Пзу
- •Статические оперативные запоминающие устройства - озу (ram)
- •Кэширование, выполняемое операционной системой
- •Алгоритм работы кэша с отложенной записью
- •Алгоритм вытеснения
- •Политика записи при кэшировании
- •Кэширование интернет-страниц
- •Кэширование результатов работы
- •Тема 4. Накопители данных: накопители на жестких магнитных дисках, накопители на гибких магнитных дисках, накопители на магнитных лентах, оптические накопители, flash-память Жёсткий диск
- •Устройство
- •Гермозона
- •Устройство позиционирования
- •Блок электроники
- •Низкоуровневое форматирование
- •Геометрия магнитного диска
- •Адресация данных
- •Технологии записи данных
- •Метод продольной записи
- •Метод перпендикулярной записи
- •Метод тепловой магнитной записи
- •Накопитель на гибких дисках
- •Конструкция
- •Оптический диск
- •[Править] Некоторые параметры оптических дисков
- •Флеш-память
- •Принцип действия[1]
- •Nor и nand приборы
- •Slc и mlc приборы
- •[Править] Аудиопамять
- •[Править] Технологические ограничения
- •[Править] Специальные файловые системы
- •[Править] nand
- •Твердотельный накопитель
- •[Править] nand ssd
- •[Править] ram ssd
- •Тема 5. Устройства ввода и вывода данных: принтеры, сканеры, факс-модемы, мыши, клавиатуры, мониторы, электронная бумага Принтер
- •[Править] Классификация
- •[Править] Матричные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Струйные принтеры
- •[Править] Классификация
- •[Править] Сублимационные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Лазерные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Другие принтеры
- •[Править] Интернет-принтеры
- •[Править] История и принципы работы
- •[Править] Обзор современных технологий цифровой печати
- •[Править] Картридж принтера
- •[Править] Печатающая головка
- •Копировальный аппарат
- •История
- •Модуляция
- •[Править] Виды модуляции
- •[Править] Аналоговая модуляция
- •[Править] Цифровая модуляция
- •[Править] Импульсная модуляция
- •[Править] Развёртка
- •[Править] Модуляция
- •[Править] Каналы связи
- •[Править] Приём сигнала
- •[Править] Свёртка
- •[Править] Запись изображения
- •[Править] Запись информации
- •Компьютерная мышь
- •[Править]Трекболы
- •[Править]Сенсорные полоски и панели
- •Компьютерная клавиатура
- •Монитор (устройство)
- •Жк-дисплей
- •Электронная бумага
- •Тема 6. Сетевые устройства: сетевые платы, сетевое оборудование
- •Активное сетевое оборудование
- •Пассивное сетевое оборудование
- •[Править] Принцип работы
- •[Править] Таблица маршрутизации
- •[Править] Применение
- •Сетевой коммутатор
- •Сетевой концентратор
- •[Править] Упрощённое описание принципа работы
- •[Править] Характеристики сетевых концентраторов
- •Межсетевой экран
- •Другие названия
- •Разновидности сетевых экранов
- •[Править] Типичные возможности
- •Тема 7. Параллельные архитектуры, графические процессоры. Языки cuda и OpenCl. Квантовые вычисления, днк-компьютеры, нанопроцессоры. Квантовый компьютер
- •Теория [править] Кубиты
- •[Править] Вычисление
- •[Править] Алгоритмы
- •[Править] Квантовая телепортация
- •[Править] Применение квантовых компьютеров [править] Специфика применения
- •[Править] Приложения к криптографии
- •[Править] Физические реализации квантовых компьютеров
- •Транзисторы на нанотрубках
- •Графический процессор
- •Массово-параллельная архитектура
- •Многоядерный процессор
- •Hyper-threading
История
Компания AT&T Dataphone Modems в Соединённых Штатах была частью SAGE (ПВО системы) в 50-х годах. Она соединяла терминалы на различных воздушных базах, радарах и контрольных центрах с командными центрами SAGE, разбросанными по США и Канаде. SAGE использовала выделенные линии связи, но устройства на каждом из концов этих линий были такими же по принципу как современные модемы.
Первым модемом для персональных компьютеров стало устройство компании Hayes Microcomputer Products, которая в 1979 году выпустила Micromodem II для персонального компьютера Apple II. Модем стоил 380 долл. и работал со скоростью 110/300 б/сек.
В 1981 году фирма Hayes выпустила модем Smartmodem 300 б/сек, система команд которого стала стандартом де-факто
Модуляция
Модуля́ция (лат. modulatio — размеренность, ритмичность) — процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала (сообщения).
Передаваемая информация заложена в управляющем (модулирующем) сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим. Модуляция, таким образом, представляет собой процесс «посадки» информационного колебания на заведомо известную несущую.
В результате модуляции спектр низкочастотного управляющего сигнала переносится в область высоких частот. Это позволяет при организации вещания настроить функционирование всех приёмо-передающих устройств на разных частотах с тем, чтобы они «не мешали» друг другу.
В качестве несущего могут быть использованы колебания различной формы (прямоугольные, треугольные и т. д.), однако чаще всего применяются гармонические колебания. В зависимости от того, какой из параметров несущего колебания изменяется, различают вид модуляции (амплитудная, частотная, фазовая и др.). Модуляция дискретным сигналом называется цифровой модуляцией или манипуляцией.
[Править] Виды модуляции
[Править] Аналоговая модуляция
Амплитудная модуляция (АМ)
Амплитудная модуляция с одной боковой полосой (SSB — однополосная АМ)
Балансная амплитудная модуляция (БАМ) — АМ с подавлением несущей
Квадратурная модуляция (QAM)
Угловая модуляция
Частотная модуляция (ЧМ)
Линейная частотная модуляция (ЛЧМ)
Фазовая модуляция (ФМ)
Сигнально-кодовая модуляция (СКМ), в англоязычном варианте Signal Code Modulation (SCM)
Сигма-дельта модуляция (∑Δ)
[Править] Цифровая модуляция
Основная статья: Манипуляция (модуляция)
[Править] Импульсная модуляция
Импульсно-кодовая модуляция (ИКМ или PCM — Pulse Code Modulation)
Дифференциальная импульсно-кодовая модуляция (ДИКМ или DPCM — Differential PCM)
Адаптивная импульсно-кодовая модуляция (АДИКМ или ADPCM — Adaptive DPCM)
Широтно-импульсная модуляция (ШИМ)
Амплитудно-импульсная модуляция (АИМ)
Частотно-импульсная модуляция (ЧИМ)
Фазово-импульсная модуляция (ФИМ)
Дельта-модуляция (ДМ или Δ-модуляция)
Сигма-дельта-модуляция (ΣΔ)
Основные характеристики
Энергетическая эффективность (потенциальная помехоустойчивость) характеризует достоверность передаваемых данных при воздействии на сигнал аддитивного белого гауссовского шума, при условии, что последовательность символов восстановлена идеальным демодулятором. Определяется минимальным отношением сигнал/шум (Eb/N0), которое необходимо для передачи данных через канал с вероятностью ошибки, не превышающей заданную. Энергетическая эффективность определяет минимальную мощность передатчика, необходимую для приемлемой работы. Характеристикой метода модуляции является кривая энергетической эффективности — зависимость вероятности ошибки идеального демодулятора от отношения сигнал/шум (Eb/N0).
Спектральная эффективность
— отношение скорости передачи данных к используемой полосе пропускания радиоканала.
AMPS: 0,83
NMT: 0,46
GSM: 1,35
Устойчивость к воздействиям канала передачи характеризует достоверность передаваемых данных при воздействии на сигнал специфичных искажений: замирания вследствие многолучевого распространения, ограничение полосы, сосредоточенные по частоте или времени помехи, эффект Доплера и др.
Требования к линейности усилителей. Для усиления сигналов с некоторыми видами модуляции могут быть использованы нелинейные усилители класса C, что позволяет существенно снизить энергопотребление передатчика, при этом уровень внеполосного излучения не превышает допустимые пределы. Данный фактор особенно важен для систем подвижной связи.
Сложность реализации модемов определяется вычислительным ресурсом, требуемым для реализации алгоритма демодуляции, и требованиями к характеристикам аналоговой части.
xDSL
хDSL (англ. digital subscriber line, цифровая абонентская линия) — семейство технологий, позволяющих значительно повысить пропускную способность абонентской линии телефонной сети общего пользования путём использования эффективных линейных кодов и адаптивных методов коррекции искажений линии на основе современных достижений микроэлектроники и методов цифровой обработки сигнала.
Технологии хDSL появились в середине 90-х годов как альтернатива цифровому абонентскому окончанию ISDN.
В аббревиатуре xDSL символ «х» используется для обозначения первого символа в названии конкретной технологии, а DSL обозначает цифровую абонентскую линию DSL (англ. Digital Subscriber Line — цифровая абонентская линия; также есть другой вариант названия — Digital Subscriber Loop — цифровой абонентский шлейф). Технологии хDSL позволяют передавать данные со скоростями, значительно превышающими те скорости, которые доступны даже самым лучшим аналоговым и цифровым модемам. Эти технологии поддерживают передачу голоса, высокоскоростную передачу данных и видеосигналов, создавая при этом значительные преимущества как для абонентов, так и для провайдеров. Многие технологии хDSL позволяют совмещать высокоскоростную передачу данных и передачу голоса по одной и той же медной паре. Существующие типы технологий хDSL различаются в основном по используемой форме модуляции и скорости передачи данных.
Службы xDSL разрабатывались для достижения определенных целей: они должны работать на существующих телефонных линиях, они не должны мешать работе различной аппаратуры абонента, такой как телефонный аппарат, факс и т. д., скорость работы должна быть выше теоретического предела в 56Кбит/сек., и наконец, они должны обеспечивать постоянное подключение. Широкое распространение технологий хDSL должно сопровождаться некоторой перестройкой работы поставщиков услуг Интернета и поставщиков услуг телефонных сетей, так как их оборудование теперь должно работать совместно. Возможен также вариант, когда альтернативный оператор связи берёт оптом в аренду большое количество абонентских окончаний у традиционного местного оператора или же арендует некоторое количество модемов в DSLAM.
К основным типам xDSL относятся ADSL, HDSL, IDSL, MSDSL, PDSL, RADSL, SDSL, SHDSL, UADSL, VDSL. Все эти технологии обеспечивают высокоскоростной цифровой доступ по абонентской телефонной линии. Некоторые технологии xDSL являются оригинальными разработками, другие представляют собой просто теоретические модели, в то время как третьи уже стали широко используемыми стандартами. Основным различием данных технологий являются методы модуляции, используемые для кодирования данных.
Методы кодирования
Технологии xDSL поддерживают несколько вариантов кодирования информации:
2B1Q: Two-binary, one-quaternary, используется для IDSL и HDSL
CAP: Carrierless Amplitude Phase Modulation - используется для HDSL
DMT: Discrete multitone modulation, наиболее распространенный метод, известен также как OFDM (Orthogonal frequency-division multiplexing)
Достижения технологий xDSL во многом определяются достижениями техники кодирования, которая за счет применения процессоров DSP (Цифровой сигнальный процессор) смогла повысить скорость передачи данных при одновременном увеличении расстояния между модемом и оборудованием DSLAM.
Сравнительный анализ технологий xDSL
Технология DSL |
Максимальная скорость (прием/передача) |
Максимальное расстояние |
Количество телефонных пар |
Основное применение |
ADSL |
24 Мбит/с / 3,5 Мбит/с |
5,5 км |
1 |
Доступ в Интернет, голос, видео, HDTV (ADSL2+) |
IDSL |
144 кбит/с |
5,5 км |
1 |
Передача данных |
HDSL |
2 Мбит/с |
4,5 км |
1,2,3 |
Объединение сетей, услуги E1 |
SDSL |
2 Мбит/с |
3 км |
1 |
Объединение сетей, услуги E1 |
VDSL |
65 Мбит/с / 35 Мбит/с |
1,5 км на max. скорости |
1 |
Объединение сетей, HDTV |
SHDSL |
2,32 Мбит/с |
7,5 км |
1 |
Объединение сетей |
UADSL |
1,5 Мбит/с / 384 кбит/с |
3,5 км на max. скорости |
1 |
Доступ в Интернет, голос, видео |
Преимущества xDSL перед ISDN
Широкое применение доступа через xDSL имеет ряд преимуществ по сравнению с технологией ISDN. Пользователь получает интегрированное обслуживание двух сетей – телефонной и компьютерной. Но для пользователя наличие двух сетей оказывается незаметным, для него только ясно, что он может одновременно пользоваться обычным телефоном и подключенным к Интернету компьютером. Скорость же компьютерного доступа при этом превосходит возможности интерфейса PRI сети ISDN при существенно более низкой стоимости, определяемой низкой стоимостью инфраструктуры IP-сетей[1].
Факс
Факс (англ. Fax (сокращ. от facsimile (от латинского fac simile, "делать одинаково"))) или Факсими́льная связь — телекоммуникационная технология передачи изображений электрическими сигналами. Исторически включалась в состав телеграфной связи и является разновидностью электросвязи.
Артур Корн в 1902 году в Германии продемонстрировал первую фотоэлектрическую факс-систему, а в 1922 году — систему на основе радиосигналов. Факсы стали широко использовать для передачи газетных статей и карт погоды. Но только в 1968 году Международный союз электросвязи утвердил первые международные стандарты для факсимильной передачи (Группа 1), в 1972 году — Группу 2 и в 1980 году — Группу 3. Принятие стандартов стало важным фактором развития факсимильной передачи: время передачи страницы сократилось с шести минут до менее одной минуты. Бум факс-технологий пришелся на 80-е годы ХХ века.
Принцип действия
Факсимильная связь включает в себя основные операции:
деление всей площади предназначенного для передачи оригинала на большое количество элементов малого размера, отличающихся друг от друга по какому-либо определённому физическому параметру. Типично для изображений — по оптической плотности;
последовательное измерение для каждого такого элемента этого физического параметра, преобразование в величину электрического тока или в набор электрических импульсов, в соответствии с предусмотренным протоколом связи;
трансляция сигнала по линии связи;
преобразование полученного сигнала, как правило, синхронное и синфазное процессу передачи, запись в приёмном устройстве полученной информации.
Устройство
Тракт факсимильной связи включает передатчик, линию связи и приёмник.
|
Этот раздел не завершён. Вы поможете проекту, исправив и дополнив его. |
|