
- •Семестр 2. Раздел 1. Архитектура эвм
- •Тема 6. Сетевые устройства: сетевые платы, сетевое оборудование 124
- •Тема 7. Параллельные архитектуры, графические процессоры. Языки cuda и OpenCl. Квантовые вычисления, днк-компьютеры, нанопроцессоры. 132
- •Тема 1. Архитектуры эвм. Принципы фон Неймана. Конвейеры. Тактовый генератор и резонаторы. Архитектура компьютера
- •Архитектура фон Неймана
- •Принципы фон Неймана
- •Гарвардская архитектура
- •Скалярный процессор
- •Векторный процессор
- •Вычислительный конвейер
- •[Править] Пузырек
- •Генератор тактовых импульсов
- •Кварцевый резонатор
- •Тема 2. Схема цпу, регистры, шины, мосты, чипсеты, слоты расширения, порты
- •Типовые структуры операционного блока микропроцессора
- •Системная шина микропроцессора
- •Принципы построения параллельного порта
- •Принципы построения последовательного порта
- •Синхронные последовательные порты
- •Асинхронные последовательные порты
- •Принципы построения микропроцессорных таймеров
- •Чипсеты современных компьютеров
- •Компоненты южного моста
- •Тема 3. Пзу, озу и способы их организации. Ассоциативная память (кэш). Пзу
- •Статические оперативные запоминающие устройства - озу (ram)
- •Кэширование, выполняемое операционной системой
- •Алгоритм работы кэша с отложенной записью
- •Алгоритм вытеснения
- •Политика записи при кэшировании
- •Кэширование интернет-страниц
- •Кэширование результатов работы
- •Тема 4. Накопители данных: накопители на жестких магнитных дисках, накопители на гибких магнитных дисках, накопители на магнитных лентах, оптические накопители, flash-память Жёсткий диск
- •Устройство
- •Гермозона
- •Устройство позиционирования
- •Блок электроники
- •Низкоуровневое форматирование
- •Геометрия магнитного диска
- •Адресация данных
- •Технологии записи данных
- •Метод продольной записи
- •Метод перпендикулярной записи
- •Метод тепловой магнитной записи
- •Накопитель на гибких дисках
- •Конструкция
- •Оптический диск
- •[Править] Некоторые параметры оптических дисков
- •Флеш-память
- •Принцип действия[1]
- •Nor и nand приборы
- •Slc и mlc приборы
- •[Править] Аудиопамять
- •[Править] Технологические ограничения
- •[Править] Специальные файловые системы
- •[Править] nand
- •Твердотельный накопитель
- •[Править] nand ssd
- •[Править] ram ssd
- •Тема 5. Устройства ввода и вывода данных: принтеры, сканеры, факс-модемы, мыши, клавиатуры, мониторы, электронная бумага Принтер
- •[Править] Классификация
- •[Править] Матричные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Струйные принтеры
- •[Править] Классификация
- •[Править] Сублимационные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Лазерные принтеры
- •[Править] Сравнение с другими типами
- •[Править] Другие принтеры
- •[Править] Интернет-принтеры
- •[Править] История и принципы работы
- •[Править] Обзор современных технологий цифровой печати
- •[Править] Картридж принтера
- •[Править] Печатающая головка
- •Копировальный аппарат
- •История
- •Модуляция
- •[Править] Виды модуляции
- •[Править] Аналоговая модуляция
- •[Править] Цифровая модуляция
- •[Править] Импульсная модуляция
- •[Править] Развёртка
- •[Править] Модуляция
- •[Править] Каналы связи
- •[Править] Приём сигнала
- •[Править] Свёртка
- •[Править] Запись изображения
- •[Править] Запись информации
- •Компьютерная мышь
- •[Править]Трекболы
- •[Править]Сенсорные полоски и панели
- •Компьютерная клавиатура
- •Монитор (устройство)
- •Жк-дисплей
- •Электронная бумага
- •Тема 6. Сетевые устройства: сетевые платы, сетевое оборудование
- •Активное сетевое оборудование
- •Пассивное сетевое оборудование
- •[Править] Принцип работы
- •[Править] Таблица маршрутизации
- •[Править] Применение
- •Сетевой коммутатор
- •Сетевой концентратор
- •[Править] Упрощённое описание принципа работы
- •[Править] Характеристики сетевых концентраторов
- •Межсетевой экран
- •Другие названия
- •Разновидности сетевых экранов
- •[Править] Типичные возможности
- •Тема 7. Параллельные архитектуры, графические процессоры. Языки cuda и OpenCl. Квантовые вычисления, днк-компьютеры, нанопроцессоры. Квантовый компьютер
- •Теория [править] Кубиты
- •[Править] Вычисление
- •[Править] Алгоритмы
- •[Править] Квантовая телепортация
- •[Править] Применение квантовых компьютеров [править] Специфика применения
- •[Править] Приложения к криптографии
- •[Править] Физические реализации квантовых компьютеров
- •Транзисторы на нанотрубках
- •Графический процессор
- •Массово-параллельная архитектура
- •Многоядерный процессор
- •Hyper-threading
Низкоуровневое форматирование
На заключительном этапе сборки устройства поверхности пластин форматируются — на них формируются дорожки и секторы. Конкретный способ определяется производителем и/или стандартом, но, как минимум, на каждую дорожку наносится магнитная метка, обозначающая её начало.
Существуют утилиты, способные тестировать физические секторы диска, и ограниченно просматривать и править его служебные данные.[14] Конкретные возможности подобных утилит сильно зависят от модели диска и технических сведений, известных автору по соответствующему семейству моделей.[15]
Геометрия магнитного диска
С целью адресации пространства поверхности пластин диска делятся на дорожки — концентрические кольцевые области. Каждая дорожка делится на равные отрезки — секторы. Адресация CHS предполагает, что все дорожки в заданной зоне диска имеют одинаковое число секторов.
Цилиндр — совокупность дорожек, равноотстоящих от центра, на всех рабочих поверхностях пластин жёсткого диска. Номер головки задает используемую рабочую поверхность (то есть конкретную дорожку из цилиндра), а номер сектора — конкретный сектор на дорожке.
Чтобы использовать адресацию CHS, необходимо знать геометрию используемого диска: общее количество цилиндров, головок и секторов в нем. Первоначально эту информацию требовалось задавать вручную; в стандарте ATA-1 была введена функция автоопределения геометрии (команда Identify Drive).[16]
Особенности геометрии жёстких дисков со встроенными контроллерами
Зонирование
На пластинах современных «винчестеров» дорожки сгруппированы в несколько зон (англ. Zoned Recording). Все дорожки одной зоны имеют одинаковое количество секторов. Однако, на дорожках внешних зон секторов больше, чем на дорожках внутренних. Это позволяет, используя бо́льшую длину внешних дорожек, добиться более равномерной плотности записи, увеличивая ёмкость пластины при той же технологии производства.
Резервные секторы
Для увеличения срока службы диска на каждой дорожке могут присутствовать дополнительные резервные секторы. Если в каком-либо секторе возникает неисправимая ошибка, то этот сектор может быть подменён резервным (англ. remapping). Данные, хранившиеся в нём, при этом могут быть потеряны или восстановлены при помощи ECC, а ёмкость диска останется прежней. Существует две таблицы переназначения: одна заполняется на заводе, другая — в процессе эксплуатации. Границы зон, количество секторов на дорожку для каждой зоны и таблицы переназначения секторов хранятся в ПЗУ блока электроники.
Логическая геометрия
По мере роста емкости выпускаемых жёстких дисков их физическая геометрия перестала вписываться в ограничения, накладываемые программными и аппаратными интерфейсами (см.: Барьеры размеров жёстких дисков). Кроме того, дорожки с различным количеством секторов несовместимы со способом адресации CHS. В результате контроллеры дисков стали сообщать не реальную, а фиктивную, логическую геометрию, вписывающуюся в ограничения интерфейсов, но не соответствующую реальности. Так, максимальные номера секторов и головок для большинства моделей берутся 63 и 255 (максимально возможные значения в функциях прерывания BIOS INT 13h), а число цилиндров подбирается соответственно ёмкости диска. Сама же физическая геометрия диска не может быть получена в штатном режиме работы[17] и другим частям системы неизвестна.