Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение - Курс лекций.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
5.18 Mб
Скачать

5.5 Магнитотвёрдые материалы

Магнитотвердые материалы в отличие от магнитомягких имеют существенно большую коэрцитивную силу, которая изменяется в пределах от 5103 до 5106 А/м, и площадь петли гистерезиса. Такие магнитные материалы применяются для изготовления по­стоянных магнитов — источников постоянных магнитных полей, которые практически во многих случаях выгоднее, чем электромагнитные.

Постоянные магниты имеют рабочий воздушный зазор; следова­тельно, на разомкнутых концах возникают полюсы, создающие размагничивающее поле с напряженностью Hd, снижающее индук­цию внутри магнита до Bd, которая меньше остаточной индукции Bг. Остаточная индукция Bг, характеризует материал в том слу­чае, если магнит находится в замкнутом состоянии и предваритель­но намагничен до насыщения в сильном внешнем магнитном поле.

Рисунок 5.5-Кривые, характеризующие свойства магнитотвёрдых материалов.

На рисунке 5.5 приведены кривые, характеризующие свойства магнитотвердых материалов: кривая размагничивания (1) участок гистерезисной петли, расположенный во втором квадрате; кривая энергии магнита в зазоре (2). Удельная магнитная энергия поля создаваемого в воздушном зазоре магнита, определяется выраже­нием:

Wd=BdHd/2 (5.9)

Индукция разомкнутого магнита Bd уменьшается с увеличением зазора. При замкнутом магните Bd =Bг, магнитная энергия равна нулю, так как Hd= 0, если зазор между полюсами велик, то напряжённость магнитного поля в зазоре равна коэрцитивной силе материала Hc, а Bd=0; следовательно, и в этом случае магнитная энергия Wd=0. При некоторых значениях Bd и Hd энергия достигает максимального значения:

Wmax= Bdmax Hdmax /2 (5.10)

Величина Wmax является важ­нейшей при оценке качества ма­териала. Форма кривой размагни­чивания характеризуется коэффи­циентом выпуклости:

=B Hmax / (Bг Hc) (5.11)

Коэффициент выпуклости при­ближается к единице с увеличе­нием прямоугольности петли ги­стерезиса. Максимальная энергия магнита тем больше, чем больше остаточная индукция Bг, коэрци­тивная сила Hс и коэффициент выпуклости .

Магнитотвердые материалы по составу и способу получения под­разделяют на следующие группы: 1) литые высококоэрцитивные сплавы; 2) металлокерамические материалы; 3) магнитотвердые ферриты; 3) сплавы на основе редкоземельных элементов; 5) прочие магнитотвердые материалы (мартенситные сплавы, пластически деформируемые сплавы и др.).

5.5.1 Литые высококоэрцитивные сплавы

Наибольшее распростра­нение получили магнитотвердые материалы на основе железоникель-алюминиевых и железоникель-кобальт-алюминиевых сплавов, ле­гированных различными добавками.

Высококоэрцитивное состояние сплавов Fe—Ni—A1 получается при концентрации никеля 20…33 % и алюминия 11…17 %. Для улучшения магнитных свойств сплавы обязательно легируются, легирование медью повышает коэрцитив­ную силу и улучшает механические свойства, но приводит к сни­жению остаточной индукции. Легирование кобальтом позволяет существенно улучшить коэрцитивную силу и повышает индукцию насыщения и коэффициент выпуклости. В качестве легирующих элементов используются также титан, кремний и ниобий. Коэрци­тивная сила Hc сплавов достигает 50 кА/м, а магнитная энергия (BH) - 12 кДж/м3.

Магнитотвердые материалы типа Al—Ni—Co представляют со­бой сплавы железа с никелем (12…26 %), кобальтом (2…40 %) и алю­минием (6…13 %), cодержащие, кроме того, с целью улучшения магнитных свойств, легирующие добавки меди (2…8 %), титана (О…9 %) и никеля (0…3 %). Сплавы, содержащие более 15 % ко­бальта, подвергают термомагнитной обработке, которая заключает­ся в охлаждении сплава от высоких температур 1250…1300°С в сильном магнитном поле, при этом возникает магнитная текстура и сплав становится магнитоанизотропным. Изотропные сплавы име­ют магнитную энергию Wmax до 6 кДж/м3, анизотропные — до 16 кДж/м3.

5.5.2 Металлокерамические и металлопластические магниты

Они создаются методами порошковой металлургии, которые позволяют автоматизировать процесс производства, получать изделия по стро­го выдержанным размерам.

Металлокерамические магниты изготовляют из измельченных тонко дисперсионных порошков сплавов ЮНДК, а также сплавов Сu—Ni—Со, Си—Ni—Fe путем прессования и дальнейшего спекания при высоких температурах. Такой способ выгодно применять для производства мелких деталей или магнитов сложной конфигу­рации.

Так как металлокерамические магниты содержат поры, то их магнитные свойства уступают литым материалам. Как правило, пористость уменьшает остаточную индукцию Bг на 3÷5 % и магнит­ную энергию Wmax (на 10…20 %) и практически не влияет на коэр­цитивную силу Hc Механические свойства их выше, чем литых маг­нитов. Металлопластические магниты изготовлять проще, чем металлокерамические, но свойства их хуже. Металлопластические магниты получают из порошка сплавов ЮНД или ЮНДК, сме­шанного с порошком диэлектрика (например, фенолоформальдегидной смолой). Процесс изготовления магнитов подобен процессу прессования пластмасс и заключается в прессовании под давле­нием 500 МПа, нагреве заготовок до 120…180°С для полимериза­ции диэлектрика.

Механические свойства металлопластических магнитов лучше, чем у литых, но магнитные свойства хуже, так как они содержат до 30% по объему неферромагнитного связующего диэлектрического материала: Bг меньше на 35…50 %, Wmax — на 40…60 %.