Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Материаловедение - Курс лекций.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
5.18 Mб
Скачать

4.13 Диэлектрические материалы в микроэлектронике.

Применяются объемные диэлектрические материалы в качестве изолирующих подложек для ГИС. Это такие материалы, как стекло, керамика (поликор-корундовая керамика), брокерит (бериллиевая керамика), сапфир, стекло (боросиликатное, алюмосиликатное). Твёрдые диэлектрики используются в качестве деталей корпусов (форстеритовая, стеатитовая керамика) – основания и крышка корпуса.

Все эти материалы должны обладать высокими электрофизическими свойствами . Должны иметь :

высокое удельное сопротивление и электрическую прочность;

выдерживать механические нагрузки (удары, вибрацию);

выдерживать термоциклы от -60 до 150-200 С;

поверхность, которая может подвергаться специальной обработке (шлифовке, полировке, химическому травлению для получения шероховатости рабочей поверхности 13-14класса);

высокую теплопроводность;

КТР должен быть близок к ТКР осаждаемых металлических пленок, выполняющие роль тонкопленочного проводника, обкладок конденсаторов, резисторов;

химически стойкими, инертными к осажденным металлическим пленкам.

Так же неорганические стекла широко используются для создания герметичных вакуумноплотных спаев вывода с основанием корпуса. ТКЛР стекла должен соответствовать ТКЛР материалов вывода и основания корпуса.

Диэлектрические материалы могут применяться в виде диэлектрических пленок. Они могут выполнять следующие функции:

изоляционное покрытие как внутри полупроводниковой пластины между элементами ИМС, так и на поверхности между тонкомлёночными проводниками и контактными площадками;

диэлектрический слой в тонкопленочных конденсаторах в ГИС;

маскирующий слой при внедрении легирующих примесей методами диффузии и ионной имплантации;

пассивирующий (защитный) слой от внешних воздействий;

подзатворный диэлектрик в МДП-структуре;

геттер примесей и дефектов.

Для этих целей наибольшее применение находят диэлектрические пленки SiO2 и Si3N4, а в качестве пассивирующих защитных слоёв кроме SiO2могут использоваться боросиликатные БСС и фосфоросиликатные ФСС стекла, которые, в свою очередь, являются геттерами примесей и деффектов.

5 Магнитные материалы

5.1 Природа магнетизма

Все вещества в природе являются магнитными, т.е. они взаимодействуют с внешним магнитным полем и обладают определёнными магнитными свойствами, которые обусловлены движением электрических зарядов. Если это движение круговое (например: движение e- вокруг ядра), то возникает элементарный круговой ток и соответствующий ему магнитный момент. Магнитные моменты есть и у протонов и у нейтронов, из которых состоит ядро. Но эти моменты в 1000 раз меньше магнитного момента электрона. Поэтому магнитные свойства атома характеризуются целиком электронами. Атом можно рассматривать как элементарный магнетик. Магнитный момент электронной оболочки и определяет магнитные свойства атома. Т.к. электронная структура у каждого материала разная, то это и приводит к разным свойствам веществ.

5.2 Основные параметры магнитных веществ

Магнитные свойства материалов определяются следующими основными параметрами:

1) Намагниченность – это отношение магнитного момента тела к его объёму.

M = m / V [A/м] (5.1)

V – объём тела; m – магнитный момент тела

2) Напряжённость магнитного поля H [A/м]

Для прямолинейного проводника:

H = I / 2r (5.2)

I – постоянный ток в проводнике; r – расстояние от проводника до точки в которой определяется напряжённость магнитного поля.

Для кольцевого проводника:

H = 1 I /  dср (5.3)

1 – число витков намагничивающей обмотки; dср – средний диаметр кольцевого проводника.

3) Магнитная индукция В (Тл) – это сумма двух составляющих напряжённости внешнего магнитного поля Н и внутреннего М.

В= 0 (Н + М) (5.4)

0 – магнитная постоянная (410-7) Гн/м

4) Магнитная восприимчивость – оценивает силу взаимодействия вещества с магнитным полем, безразмерная величина. Это отношение намагниченности к напряженности магнитного поля. Способность данного вещества намагничиваться в магнитном поле.

м = М / Н (5.5)

5) Магнитная проницаемость. Среда, в которой возникает магнитное поле, характеризуется магнитной проницаемостью.

 = 1 + м = В / 0 Н (5.6)

Она показывает во сколько раз магнитная индукция В поля в данной среде больше, чем магнитная индукция в вакууме.