
- •1 Физико-химические основы материаловедения 5
- •2 Проводниковые материалы 39
- •3 Полупроводниковые материалы 114
- •4 Диэлектрические материалы 136
- •5 Магнитные материалы 188
- •Введение
- •1 Физико-химические основы материаловедения
- •1 .1 Общие сведения о строении вещества
- •1.1.1 Типы химических связей
- •1.1.2 Агрегатные состояния вещества
- •1.1.3 Кристаллическое строение вещества
- •1.1.4 Анизотропия кристаллов. Индексы Миллера
- •1.1.5 Процесс кристаллизации веществ
- •1.1.6 Полиморфизм (аллотропия)
- •1.1.7 Виды дефектов в кристаллах
- •1.1.8 Влияние термической обработки на структуру свойства материалов
- •1.1.9 Влияние пластической деформации на структурные свойства материалов
- •1.2 Основные cbeдения о сплавах
- •1.2.1 Понятие о сплавах
- •1.2.2 Диаграммы состояния двойных сплавов
- •1.2.3 Диаграмма "состав-свойство"
- •1.2.4 Диаграмма состояния сплавов железо-углерод.
- •1.3.Основные свойства и параметры материалов.
- •1.3.1 Механические и технологические свойства материалов и методы их определения
- •1.3.1.1 Определение твердости металлов и сплавов
- •1.3.2 Тепловые характеристики
- •1.3.3 Физико-химические характеристики
- •1.3.4 Электрофизические характеристики
- •1.3.5 Зонная структура твердых тел
- •2 Проводниковые материалы
- •2.1 Классификация проводниковых материалов
- •2.2 Электрические свойства проводниковых материалов
- •2.3 Материалы с высокой проводимостью
- •2.3.1 Медь и ее сплавы
- •2.3.2 Алюминий и его сплавы
- •2.3.3 Натрий
- •2.4 Материалы с высоким сопротивлением
- •2.4.1 Проволочные резистивные материалы
- •2.4.2. Пленочные резистивные материалы
- •2.4.3. Материалы для термопар
- •2.5 Проводниковые материалы и сплавы различного применения
- •2.5.1 Благородные металлы
- •2.5.2 Тугоплавкие металлы
- •2.5.3 Ртуть Hg
- •2.5.4. Легкоплавкие металлы
- •2.6 Сверхпроводники и криопроводники
- •2.6.1 Сверхпроводники
- •2.6.2 Криопроводники
- •2.7 Неметаллические проводниковые материалы
- •2.7.1 Материалы для электроугольных изделий
- •2.7.2 Проводящие и резистивные композиционные материалы
- •2.7.3 Контактолы
- •2.8 Материалы для подвижных контактов
- •2.8.1 Материалы для скользящих контактов
- •2.8.2 Материалы для разрывных контактов
- •2.9 Припои
- •2.10 Металлокерамика
- •2.11 Металлические покрытия
- •2.12 Проводниковые изделия
- •2.14 Порошковые конструкционные материалы
- •2.15 Композиционные конструкционные материалы
- •2.16 Металлы и сплавы для элементов конструкции полупроводниковых приборов и микросхем
- •3 Полупроводниковые материалы
- •3.1 Собственная и примесная электропроводность полупроводников
- •3.2 Примеси в полупроводниках
- •3.3 Основные параметры полупроводников
- •3.3.2 Удельное электрическое сопротивление - параметр, характеризующий способность материала проводить электрический ток:
- •3.3.6. Концентрация носителей заряда.
- •3.4 Влияние различных факторов на электропроводность полупроводников
- •3.4.1 Зависимость электропроводности полупроводников от температуры
- •3.4.2 Зависимость электропроводности полупроводников от внешнего электрического поля.
- •3.4.3 Влияние деформации на проводимость полупроводников
- •3.4.4 Влияние света на проводимость полупроводников
- •3.5 Производство полупроводниковых материалов
- •3.5.1. Выращивание монокристаллов кремния по методу Чохральского
- •3.5.2. Зонная плавка кремния и германия
- •3.6 Свойства полупроводниковых материалов и их применение
- •3.6.1 Классификация полупроводниковых материалов
- •3.6.2 Применение полупроводниковых материалов
- •3.6.3 Германий
- •3.6.4 Кремний
- •3.6.5 Карбид кремния
- •3.6.6. Полупроводниковые соединения aiii bv
- •3.6.7. Соединения aiibvi и другие халькогенидные полупроводники
- •4 Диэлектрические материалы
- •4.1 Общие сведения о диэлектриках
- •4.2 Поляризация диэлектриков
- •4.2.1 Электронная поляризация
- •4.2.2 Ионная поляризация
- •4.2.3 Дипольно-релаксационная поляризация
- •4.2.4 Ионно-релаксационная поляризация
- •4.2.5 Самопроизвольная (спонтанная) поляризация
- •4.3 Классификация диэлектриков по виду поляризации
- •4.4 Диэлектрическая проницаемость
- •4.4.1 Зависимость ε от температуры для полярных диэлектриков
- •4.4.2 Зависимость ε от температуры для неполярных диэлектриков
- •4.4.3 Зависимость ε от влажности
- •4.4.4 Зависимость ε от частоты f
- •4.5 Электропроводность диэлектриков
- •4.6 Диэлектрические потери
- •4.6.1 Виды диэлектрических потерь
- •4.7 Пробой диэлектриков
- •4.7.1 Основные понятия пробоя диэлектрика
- •4.7.2 Виды пробоев в диэлектриках
- •4.8 Физико-химические свойства диэлектриков
- •4.8.1 Теплопроводность
- •4.8.2 Химические свойства диэлектриков
- •4.9 Газообразные диэлектрические материалы
- •4.10 Жидкие диэлектрические материалы
- •4.11 Активные диэлектрики
- •4.11.1 Сегнетоэлектрики
- •4.11.2 Пьезоэлектрики
- •4.11.3 Электреты
- •4.11.4 Диэлектрики для оптической генерации
- •4.11.5 Электрооптические материалы
- •4.11 Твердые органические диэлектрики
- •4.11.1 Основные понятия о высокомолекулярных соединениях (полимерах)
- •4.11.2 Пластмассы
- •4.11.3 Компаунды
- •4.11.4 Лаки
- •4.11.5 Эпоксидные смолы
- •4.11.6 Клеи
- •4.12 Твердые неорганические диэлектрики
- •4.12.1 Неорганические стёкла
- •4.12.1.1 Классификация неорганических стекол
- •4.12.1.2 Кварцевое стекло
- •4.12.2 Ситаллы
- •4.12.3 Керамика, свойства, типы, применение
- •4.13 Диэлектрические материалы в микроэлектронике.
- •5 Магнитные материалы
- •5.1 Природа магнетизма
- •5.2 Основные параметры магнитных веществ
- •5.3 Классификация магнитных материалов
- •5.3.1 Слабомагнитные вещества
- •5.3.2 Сильномагнитные вещества
- •5.4 Магнитомягкие материалы
- •5.4.1 Технически чистое железо (низкоуглеродистая сталь)
- •5.4.2 Пермаллои
- •5.4.3 Аморфные магнитные материалы
- •5.4.4 Магнитодиэлектрики
- •5.4.5 Ферриты
- •5.5 Магнитотвёрдые материалы
- •5.5.1 Литые высококоэрцитивные сплавы
- •5.5.3 Магнитотвердые ферриты
- •5.5.4 Сплавы на основе редкоземельных металлов
- •5.5.5 Другие магнитотвердые металлы
- •5.6 Материалы специального назначения
4.6.1 Виды диэлектрических потерь
Основные причины диэлектрических потерь:
- релаксационная поляризация
- ударная ионизация
- сквозная электропроводность
Потери, обусловленные, релаксационной поляризацией имеют место в полярных диэлектриках, в диэлектриках с ионной структурой, с неплотной упаковкой. Объясним зависимость tg от Т и f для жидких диэлектриков (рисунок 4.12).
Рисунок 4.12 – График зависимости тангенса угла диэлектрических потерь полярного диэлектрика политрифторхлорэтилен от частоты при различных температурах.
При невысокой температуре жидкость очень вязкая, молекулы (диполи) не успевают следовать за изменением электрического поля, дипольно-релаксационная поляризация отсутствует и tg маленький. С увеличением температуры количество диполей, участвующих в поляризации, растет, расходуется дополнительная энергия на их поляризацию, поэтому tg увеличивается, достигает максимума и начинает уменьшаться, потому что дальнейшее увеличение температуры настолько усиливает хаотическое тепловое движение диполей, что затрудняет их поворот в электрическом поле. Достигнув минимального значения tg снова увеличивается, так как уже начинает сказываться влияние IСК, который увеличивается с увеличением температуры.
Рисунок 4.13 – График зависимости тангенса угла диэлектрических потерь конденсаторной бумаги от температуры.
Зависимость tg от f объясняется так. При малых f число поворотов диполей за единицу времени невелико, значит, невелика и рассеиваемая мощность. Частота увеличивается, увеличивается число поворотов, значит, увеличивается и рассеиваемая мощность и tg . При достаточно высокой f tg начинает уменьшаться, так как диполи не успевают следовать за изменением электрического поля.
С увеличением температуры максимум зависимости tg от f смещается в область высоких частот, так как с увеличением температуры вязкость и время релаксации уменьшается.
Потери, вызванные ударной ионизацией свойственны пористым и слоистым диэлектрикам с газовыми включениями и газам.
В газах при повышении U > UПР , называемом порогом ионизации, в газовых включениях в диэлектрике возникает процесс ударной ионизации, т.е. расщепление атомов или молекул газа на ионы и электроны. Увеличивается рассеяние энергии электрического поля и tg увеличивается достигая максимума.
При напряжении UК газ уже полностью ионизирован, процесс ионизации заканчивается, энергия больше не расходуется на ионизацию, и
tg уменьшается. Ионизация газовых включений особенно опасна для неорганического диэлектрика с закрытыми порами, так как может вызвать местный перегрев изделия и его разрушение. Для этого такие диэлектрики пропитывают маслами, лаками, компаундами (например конденсаторная бумага) (рисунок 4.14).
Рисунок 4.14 – График зависимости тангенса угла диэлектрических потерь пористого диэлектрика от напряжения.
Потери, обусловленные сквозной электропроводностью
Это характерно для любого диэлектрика, как при постоянном, так и переменном напряжениях. С увеличением температуры эти потери увеличиваются по экспоненциальному закону:
P(t) = P0 ∙ ekt , (4.15)
где
P0
при 0
С;
K – температурный коэффициент потерь.
Так как диэлектрики обладают высоким удельным сопротивление (108 – 1018 Ом), то потери на электропроводность ничтожно малы. Но при t > 100 С эти потери уже будут существенны.
Удельные потери- это диэлектрические потери на единицу объема
P ∕ V = 2 ∙ π ∙ f ∙ ε ∙ ε0 ∙ U2 ∙ tg δ (4.16)