
- •1 Физико-химические основы материаловедения 5
- •2 Проводниковые материалы 39
- •3 Полупроводниковые материалы 114
- •4 Диэлектрические материалы 136
- •5 Магнитные материалы 188
- •Введение
- •1 Физико-химические основы материаловедения
- •1 .1 Общие сведения о строении вещества
- •1.1.1 Типы химических связей
- •1.1.2 Агрегатные состояния вещества
- •1.1.3 Кристаллическое строение вещества
- •1.1.4 Анизотропия кристаллов. Индексы Миллера
- •1.1.5 Процесс кристаллизации веществ
- •1.1.6 Полиморфизм (аллотропия)
- •1.1.7 Виды дефектов в кристаллах
- •1.1.8 Влияние термической обработки на структуру свойства материалов
- •1.1.9 Влияние пластической деформации на структурные свойства материалов
- •1.2 Основные cbeдения о сплавах
- •1.2.1 Понятие о сплавах
- •1.2.2 Диаграммы состояния двойных сплавов
- •1.2.3 Диаграмма "состав-свойство"
- •1.2.4 Диаграмма состояния сплавов железо-углерод.
- •1.3.Основные свойства и параметры материалов.
- •1.3.1 Механические и технологические свойства материалов и методы их определения
- •1.3.1.1 Определение твердости металлов и сплавов
- •1.3.2 Тепловые характеристики
- •1.3.3 Физико-химические характеристики
- •1.3.4 Электрофизические характеристики
- •1.3.5 Зонная структура твердых тел
- •2 Проводниковые материалы
- •2.1 Классификация проводниковых материалов
- •2.2 Электрические свойства проводниковых материалов
- •2.3 Материалы с высокой проводимостью
- •2.3.1 Медь и ее сплавы
- •2.3.2 Алюминий и его сплавы
- •2.3.3 Натрий
- •2.4 Материалы с высоким сопротивлением
- •2.4.1 Проволочные резистивные материалы
- •2.4.2. Пленочные резистивные материалы
- •2.4.3. Материалы для термопар
- •2.5 Проводниковые материалы и сплавы различного применения
- •2.5.1 Благородные металлы
- •2.5.2 Тугоплавкие металлы
- •2.5.3 Ртуть Hg
- •2.5.4. Легкоплавкие металлы
- •2.6 Сверхпроводники и криопроводники
- •2.6.1 Сверхпроводники
- •2.6.2 Криопроводники
- •2.7 Неметаллические проводниковые материалы
- •2.7.1 Материалы для электроугольных изделий
- •2.7.2 Проводящие и резистивные композиционные материалы
- •2.7.3 Контактолы
- •2.8 Материалы для подвижных контактов
- •2.8.1 Материалы для скользящих контактов
- •2.8.2 Материалы для разрывных контактов
- •2.9 Припои
- •2.10 Металлокерамика
- •2.11 Металлические покрытия
- •2.12 Проводниковые изделия
- •2.14 Порошковые конструкционные материалы
- •2.15 Композиционные конструкционные материалы
- •2.16 Металлы и сплавы для элементов конструкции полупроводниковых приборов и микросхем
- •3 Полупроводниковые материалы
- •3.1 Собственная и примесная электропроводность полупроводников
- •3.2 Примеси в полупроводниках
- •3.3 Основные параметры полупроводников
- •3.3.2 Удельное электрическое сопротивление - параметр, характеризующий способность материала проводить электрический ток:
- •3.3.6. Концентрация носителей заряда.
- •3.4 Влияние различных факторов на электропроводность полупроводников
- •3.4.1 Зависимость электропроводности полупроводников от температуры
- •3.4.2 Зависимость электропроводности полупроводников от внешнего электрического поля.
- •3.4.3 Влияние деформации на проводимость полупроводников
- •3.4.4 Влияние света на проводимость полупроводников
- •3.5 Производство полупроводниковых материалов
- •3.5.1. Выращивание монокристаллов кремния по методу Чохральского
- •3.5.2. Зонная плавка кремния и германия
- •3.6 Свойства полупроводниковых материалов и их применение
- •3.6.1 Классификация полупроводниковых материалов
- •3.6.2 Применение полупроводниковых материалов
- •3.6.3 Германий
- •3.6.4 Кремний
- •3.6.5 Карбид кремния
- •3.6.6. Полупроводниковые соединения aiii bv
- •3.6.7. Соединения aiibvi и другие халькогенидные полупроводники
- •4 Диэлектрические материалы
- •4.1 Общие сведения о диэлектриках
- •4.2 Поляризация диэлектриков
- •4.2.1 Электронная поляризация
- •4.2.2 Ионная поляризация
- •4.2.3 Дипольно-релаксационная поляризация
- •4.2.4 Ионно-релаксационная поляризация
- •4.2.5 Самопроизвольная (спонтанная) поляризация
- •4.3 Классификация диэлектриков по виду поляризации
- •4.4 Диэлектрическая проницаемость
- •4.4.1 Зависимость ε от температуры для полярных диэлектриков
- •4.4.2 Зависимость ε от температуры для неполярных диэлектриков
- •4.4.3 Зависимость ε от влажности
- •4.4.4 Зависимость ε от частоты f
- •4.5 Электропроводность диэлектриков
- •4.6 Диэлектрические потери
- •4.6.1 Виды диэлектрических потерь
- •4.7 Пробой диэлектриков
- •4.7.1 Основные понятия пробоя диэлектрика
- •4.7.2 Виды пробоев в диэлектриках
- •4.8 Физико-химические свойства диэлектриков
- •4.8.1 Теплопроводность
- •4.8.2 Химические свойства диэлектриков
- •4.9 Газообразные диэлектрические материалы
- •4.10 Жидкие диэлектрические материалы
- •4.11 Активные диэлектрики
- •4.11.1 Сегнетоэлектрики
- •4.11.2 Пьезоэлектрики
- •4.11.3 Электреты
- •4.11.4 Диэлектрики для оптической генерации
- •4.11.5 Электрооптические материалы
- •4.11 Твердые органические диэлектрики
- •4.11.1 Основные понятия о высокомолекулярных соединениях (полимерах)
- •4.11.2 Пластмассы
- •4.11.3 Компаунды
- •4.11.4 Лаки
- •4.11.5 Эпоксидные смолы
- •4.11.6 Клеи
- •4.12 Твердые неорганические диэлектрики
- •4.12.1 Неорганические стёкла
- •4.12.1.1 Классификация неорганических стекол
- •4.12.1.2 Кварцевое стекло
- •4.12.2 Ситаллы
- •4.12.3 Керамика, свойства, типы, применение
- •4.13 Диэлектрические материалы в микроэлектронике.
- •5 Магнитные материалы
- •5.1 Природа магнетизма
- •5.2 Основные параметры магнитных веществ
- •5.3 Классификация магнитных материалов
- •5.3.1 Слабомагнитные вещества
- •5.3.2 Сильномагнитные вещества
- •5.4 Магнитомягкие материалы
- •5.4.1 Технически чистое железо (низкоуглеродистая сталь)
- •5.4.2 Пермаллои
- •5.4.3 Аморфные магнитные материалы
- •5.4.4 Магнитодиэлектрики
- •5.4.5 Ферриты
- •5.5 Магнитотвёрдые материалы
- •5.5.1 Литые высококоэрцитивные сплавы
- •5.5.3 Магнитотвердые ферриты
- •5.5.4 Сплавы на основе редкоземельных металлов
- •5.5.5 Другие магнитотвердые металлы
- •5.6 Материалы специального назначения
4.5 Электропроводность диэлектриков
В диэлектрике под воздействием внешнего поля происходит поляризация – перемещение электрических зарядов, а это перемещение электрических зарядов и есть электрический ток в диэлектрике. Ток при электронной и ионной поляризации называется током смещения, его мгновенное значение IСМ. Он проходит в очень малые промежутки 10-15 с.
Релаксационная поляризация вызывает прохождение в диэлектрике тока абсорбции IАБ .
Наличие в диэлектрике небольшого числа свободных зарядов обуславливает возникновение небольшого по величине сквозного тока IСК. Таким образом, суммарный ток в диэлектрике, называемый током утечки, равен:
IУТ = IСК + IАБ + IСМ . (4.7)
В случае постоянного тока в первый момент значение тока через диэлектрик значительно больше, чем спустя некоторое время, так как со временем IСМ и IАБ - прекращаются, так как обуславливаются быстропротекающими процессами поляризации, и на постоянном токе проводимость диэлектрика определяется только сквозным током.
На переменном токе будут все три вида токов в течении всего времени приложения напряжения.
Электропроводность диэлектриков в первую очередь определяется наличием в них загрязнений, т.е. примесей. При повышении температуры электропроводность диэлектрика увеличивается, так как под воздействием температуры происходит разрушение молекул диэлектрика, появляются свободные носители. Чем выше температура, тем сильнее увеличивается проводимость диэлектрика, падает сопротивление.
В твердых диэлектриках необходимо различать объёмную и поверхностную электропроводность.
Рисунок 4.9 – Схема прохождения объемного и поверхностного сквозных токов в твердом диэлектрике:
1 – электроды; 2 – диэлектрик.
Объемная электропроводность при низких t обусловлена передвижением слабо закреплённых ионов – ионов примеси. При повышении t проводимость обусловлена переносом ионов основных материалов диэлектрика, освобожденных из узлов кристаллической решетки. У гигроскопичных материалов (ткани, пористая керамика) объемная проводимость возрастает во влажном воздухе за счет поглощения влаги. Это явление обратимое. Если высушить такой диэлектрик, то проводимость его уменьшается.
Поверхностная электропроводность диэлектрика зависит от состояния поверхности диэлектрика, от степени ее увлажнения и загрязнения. Вода на поверхности диэлектрика способствует диссоциации молекул диэлектрика на ионы, за счет чего и повышается поверхностная проводимость. Чтобы снизить её, диэлектрики, используемые как электроизоляционные материалы, покрывают влагостойкими, не смачиваемыми гидрофобными веществами, например глазурью, кремний органичными лаками или промывают спиртом, водой с последовательной просушкой. Наиболее эффективно длительное кипячение в дистиллированной воде.
Объемная и поверхностная электропроводность характеризуются удельным объемным и удельным поверхностным сопротивлениями диэлектрика.
Удельное объемное сопротивление – это сопротивление куба диэлектрика с ребром 1 метр умноженное на 1 метр, причем считают, что ток проходит только сквозь куб от одной его грани к противоположной.
Объемное удельное сопротивление плоского образца материала рассчитывается так:
ρV = RV ∙ S ∕ h , (4.8)
где RV – объемное сопротивление образца в Ом;
S – площадь электрода, м2;
h – толщина образца.
Удельное поверхностное сопротивление ρS равно сопротивлению любых размеров квадрата на поверхности диэлектрика, ток через который идет от одной стороны к другой противоположной.
Это сопротивление в Ом рассчитывается так:
ρS = RS ∙ d ∕ l , (4.9)
где RS – поверхностное сопротивление образца между параллельными электродами шириной d на расстоянии друг от друга l. При d = l ρS = RS
Рисунок 4.10 – Схема измерения поверхностного удельного сопротивления:
1 – электроды; 2 – диэлектрик.
Полное сопротивление диэлектрика в Ом можно рассматривать как сумму параллельно включенных объемных и поверхностных сопротивлений:
1 ∕ R = 1 ∕ RV + 1 ∕ RS = (RS + RV) ∕ (RV ∙ RS) (4.10)