
- •1 Физико-химические основы материаловедения 5
- •2 Проводниковые материалы 39
- •3 Полупроводниковые материалы 114
- •4 Диэлектрические материалы 136
- •5 Магнитные материалы 188
- •Введение
- •1 Физико-химические основы материаловедения
- •1 .1 Общие сведения о строении вещества
- •1.1.1 Типы химических связей
- •1.1.2 Агрегатные состояния вещества
- •1.1.3 Кристаллическое строение вещества
- •1.1.4 Анизотропия кристаллов. Индексы Миллера
- •1.1.5 Процесс кристаллизации веществ
- •1.1.6 Полиморфизм (аллотропия)
- •1.1.7 Виды дефектов в кристаллах
- •1.1.8 Влияние термической обработки на структуру свойства материалов
- •1.1.9 Влияние пластической деформации на структурные свойства материалов
- •1.2 Основные cbeдения о сплавах
- •1.2.1 Понятие о сплавах
- •1.2.2 Диаграммы состояния двойных сплавов
- •1.2.3 Диаграмма "состав-свойство"
- •1.2.4 Диаграмма состояния сплавов железо-углерод.
- •1.3.Основные свойства и параметры материалов.
- •1.3.1 Механические и технологические свойства материалов и методы их определения
- •1.3.1.1 Определение твердости металлов и сплавов
- •1.3.2 Тепловые характеристики
- •1.3.3 Физико-химические характеристики
- •1.3.4 Электрофизические характеристики
- •1.3.5 Зонная структура твердых тел
- •2 Проводниковые материалы
- •2.1 Классификация проводниковых материалов
- •2.2 Электрические свойства проводниковых материалов
- •2.3 Материалы с высокой проводимостью
- •2.3.1 Медь и ее сплавы
- •2.3.2 Алюминий и его сплавы
- •2.3.3 Натрий
- •2.4 Материалы с высоким сопротивлением
- •2.4.1 Проволочные резистивные материалы
- •2.4.2. Пленочные резистивные материалы
- •2.4.3. Материалы для термопар
- •2.5 Проводниковые материалы и сплавы различного применения
- •2.5.1 Благородные металлы
- •2.5.2 Тугоплавкие металлы
- •2.5.3 Ртуть Hg
- •2.5.4. Легкоплавкие металлы
- •2.6 Сверхпроводники и криопроводники
- •2.6.1 Сверхпроводники
- •2.6.2 Криопроводники
- •2.7 Неметаллические проводниковые материалы
- •2.7.1 Материалы для электроугольных изделий
- •2.7.2 Проводящие и резистивные композиционные материалы
- •2.7.3 Контактолы
- •2.8 Материалы для подвижных контактов
- •2.8.1 Материалы для скользящих контактов
- •2.8.2 Материалы для разрывных контактов
- •2.9 Припои
- •2.10 Металлокерамика
- •2.11 Металлические покрытия
- •2.12 Проводниковые изделия
- •2.14 Порошковые конструкционные материалы
- •2.15 Композиционные конструкционные материалы
- •2.16 Металлы и сплавы для элементов конструкции полупроводниковых приборов и микросхем
- •3 Полупроводниковые материалы
- •3.1 Собственная и примесная электропроводность полупроводников
- •3.2 Примеси в полупроводниках
- •3.3 Основные параметры полупроводников
- •3.3.2 Удельное электрическое сопротивление - параметр, характеризующий способность материала проводить электрический ток:
- •3.3.6. Концентрация носителей заряда.
- •3.4 Влияние различных факторов на электропроводность полупроводников
- •3.4.1 Зависимость электропроводности полупроводников от температуры
- •3.4.2 Зависимость электропроводности полупроводников от внешнего электрического поля.
- •3.4.3 Влияние деформации на проводимость полупроводников
- •3.4.4 Влияние света на проводимость полупроводников
- •3.5 Производство полупроводниковых материалов
- •3.5.1. Выращивание монокристаллов кремния по методу Чохральского
- •3.5.2. Зонная плавка кремния и германия
- •3.6 Свойства полупроводниковых материалов и их применение
- •3.6.1 Классификация полупроводниковых материалов
- •3.6.2 Применение полупроводниковых материалов
- •3.6.3 Германий
- •3.6.4 Кремний
- •3.6.5 Карбид кремния
- •3.6.6. Полупроводниковые соединения aiii bv
- •3.6.7. Соединения aiibvi и другие халькогенидные полупроводники
- •4 Диэлектрические материалы
- •4.1 Общие сведения о диэлектриках
- •4.2 Поляризация диэлектриков
- •4.2.1 Электронная поляризация
- •4.2.2 Ионная поляризация
- •4.2.3 Дипольно-релаксационная поляризация
- •4.2.4 Ионно-релаксационная поляризация
- •4.2.5 Самопроизвольная (спонтанная) поляризация
- •4.3 Классификация диэлектриков по виду поляризации
- •4.4 Диэлектрическая проницаемость
- •4.4.1 Зависимость ε от температуры для полярных диэлектриков
- •4.4.2 Зависимость ε от температуры для неполярных диэлектриков
- •4.4.3 Зависимость ε от влажности
- •4.4.4 Зависимость ε от частоты f
- •4.5 Электропроводность диэлектриков
- •4.6 Диэлектрические потери
- •4.6.1 Виды диэлектрических потерь
- •4.7 Пробой диэлектриков
- •4.7.1 Основные понятия пробоя диэлектрика
- •4.7.2 Виды пробоев в диэлектриках
- •4.8 Физико-химические свойства диэлектриков
- •4.8.1 Теплопроводность
- •4.8.2 Химические свойства диэлектриков
- •4.9 Газообразные диэлектрические материалы
- •4.10 Жидкие диэлектрические материалы
- •4.11 Активные диэлектрики
- •4.11.1 Сегнетоэлектрики
- •4.11.2 Пьезоэлектрики
- •4.11.3 Электреты
- •4.11.4 Диэлектрики для оптической генерации
- •4.11.5 Электрооптические материалы
- •4.11 Твердые органические диэлектрики
- •4.11.1 Основные понятия о высокомолекулярных соединениях (полимерах)
- •4.11.2 Пластмассы
- •4.11.3 Компаунды
- •4.11.4 Лаки
- •4.11.5 Эпоксидные смолы
- •4.11.6 Клеи
- •4.12 Твердые неорганические диэлектрики
- •4.12.1 Неорганические стёкла
- •4.12.1.1 Классификация неорганических стекол
- •4.12.1.2 Кварцевое стекло
- •4.12.2 Ситаллы
- •4.12.3 Керамика, свойства, типы, применение
- •4.13 Диэлектрические материалы в микроэлектронике.
- •5 Магнитные материалы
- •5.1 Природа магнетизма
- •5.2 Основные параметры магнитных веществ
- •5.3 Классификация магнитных материалов
- •5.3.1 Слабомагнитные вещества
- •5.3.2 Сильномагнитные вещества
- •5.4 Магнитомягкие материалы
- •5.4.1 Технически чистое железо (низкоуглеродистая сталь)
- •5.4.2 Пермаллои
- •5.4.3 Аморфные магнитные материалы
- •5.4.4 Магнитодиэлектрики
- •5.4.5 Ферриты
- •5.5 Магнитотвёрдые материалы
- •5.5.1 Литые высококоэрцитивные сплавы
- •5.5.3 Магнитотвердые ферриты
- •5.5.4 Сплавы на основе редкоземельных металлов
- •5.5.5 Другие магнитотвердые металлы
- •5.6 Материалы специального назначения
1.1.3 Кристаллическое строение вещества
В твердых веществах атомы и молекулы могут быть расположены в геометрически правильном порядке или в хаотическом беспорядке. Вещества, обладающие геометрически упорядоченным расположением атомов или молекул, называют кристаллическими, а вещества с хаотическим расположением атомов или молекул - аморфными.
Кристаллические вещества образуют кристаллы совершенно определенной формы. Расположение атомов в кристалле можно представить в виде пространственной кристаллической решетки, которая состоит из множества сопряженных друг с другом элементарных кристаллических ячеек. Кристаллические решетки классифицируются как по виду частиц, образующих ее, так и по форме элементарной ячейки. Геометрически возможны 14 видов пространственных решеток, которые являются основой семи систем кристаллических решёток - сингоний: триклинной, моноклинной, ромбической, тетрагональной, ромбоэдрической, гексагональной, кубической. Элементарные ячейки кристаллических систем представлены на рисунке 1.4.
Рисунок 1.4 - Элементарные ячейки кристаллических систем
Триклинная кристаллическая система .обладает наименьшей пространственной симметрией, так как все ребра элементарной ячейки различны и не составляют между собой прямого угла. Кубические кристаллы обладают наибольшей пространственной симметрией, так как все их ребра равны и составляют между собой прямые углы.
Наибольшее распространение имеет кубические решетки объемноцентрированные, гранецентрированные (рисунок 1.5).
Размеры кристаллической решетки характеризуются её параметрами.
Рисунок 1.5 - Элементарные ячейки кубической решетки.
Под параметром решетки понимают расстояние между ближайшими параллельными атомными плоскостями, образующими элементарную ячейку. Параметр кубической решетки обозначается буквой а и находится в пределах 0,28...0,6 нм. Для характеристики гексагональной решётки необходимо два параметра - сторона шестигранника а к высота призмы с.
В зависимости от вида частиц, образующих кристаллическую решетку, различают атомные, ионные, металлические и молекулярные кристаллические решётки.
В аморфных веществах отсутствует строго упорядоченное расположение атомов. Аморфное тело - это затвердевшая жидкость, которая образуется при быстром охлаждении. В результате быстрого охлаждения молекулы вещества не успевают сформироваться в виде кристаллов. В отличии от кристаллов аморфные тела изотропны (одинаковые свойства во всех направлениях) по свойствам, не имеют определенной температуры плавления.
Некоторые вещества могут находиться как в кристаллическом, так и в аморфном состоянии (SiO2), или иметь аморфно -кристаллическое строение (ситалл, полимеры).
1.1.4 Анизотропия кристаллов. Индексы Миллера
Ни одна из рассмотренных кристаллических решеток не обладает абсолютно пространственной симметрией. Поэтому и свойства кристалла зависят от направления, в котором они рассматриваются. Такое разнообразие свойств кристалла в разных направлениях называют анизотропией.
Чтобы задать направление в кристалле, за начало системы координат принимают одну из вершин (узел) элементарной кристаллической ячейки, а в качестве осей приникают ребра, сходящиеся в этой вершине. Эти оси называют кристаллографическими и обозначают X, У, Z (рисунок 1.6). Длины ребер элементарной ячейки называют осевыми единицами. Если взять плоскость в кристалле, которая пересекает кристаллографические оси х, y, z в точках А, В, С, то она отсекает на осях х, у, z отрезки ОА. 0В, ОС. За единицу измерения этих отрезков берут постоянную решетки, условно принятую за единицу. Находят обратные значения этих отрезков. Полученные обратные величины 1/OA, 1/OB, 1/OC приводят к общему знаменателю, затем знаменатель отбрасывают. Полученные числа называют индексами Миллера. Индексы Миллера в круглых скобках, например,(111),(110),100) обозначают расположение плоскости в кристалле. Если плоскость в кристалле не пересекает кристаллическую ось, то индекс Миллера –нуль. Для семейства параллельных плоскостей в кристалле и отстоящих на параметр решетки индексы Миллера одинаковы и заключаются в фигурные скобки, например {100},{101}
Рисунок 1.6 - Примеры обозначения направлений и кристаллографических плоскостей в кубических кристаллах с помощью индексов Миллера.
Таким образом ориентация плоскости задаётся величинами обратными длинам отсекаемых отрезков. Направления кристаллографических осей записывают о помощью индексов Миллера, заключенных в квадратные скобки. Например, направление оси Х – [100]. Семейство параллельных направлений обозначается так <100>, <101>. Знак минус над индексом соответствует отрицательному отрезку (010), (001) (рисунок 1.6).
Для полупроводникового производства анизотропия имеет важное значение, т.к. направление кристаллографических плоскостей определяет скорость травления, диффузии и другие свойства полупроводника.
Если тело состоит из большого количества кристаллов, т.е. является поликристаллическим, то за счет усреднения свойств отдельных кристаллов свойства тела в целом не зависят от направления. Эта кажущаяся независимость свойств тела от направления называется квазиизотропией. Однако с помощью специальной обработки могут быть получены текстурованные материалы с ориентированным расположением кристаллов, в которых проявляется анизотропия.