
- •1 Физико-химические основы материаловедения 5
- •2 Проводниковые материалы 39
- •3 Полупроводниковые материалы 114
- •4 Диэлектрические материалы 136
- •5 Магнитные материалы 188
- •Введение
- •1 Физико-химические основы материаловедения
- •1 .1 Общие сведения о строении вещества
- •1.1.1 Типы химических связей
- •1.1.2 Агрегатные состояния вещества
- •1.1.3 Кристаллическое строение вещества
- •1.1.4 Анизотропия кристаллов. Индексы Миллера
- •1.1.5 Процесс кристаллизации веществ
- •1.1.6 Полиморфизм (аллотропия)
- •1.1.7 Виды дефектов в кристаллах
- •1.1.8 Влияние термической обработки на структуру свойства материалов
- •1.1.9 Влияние пластической деформации на структурные свойства материалов
- •1.2 Основные cbeдения о сплавах
- •1.2.1 Понятие о сплавах
- •1.2.2 Диаграммы состояния двойных сплавов
- •1.2.3 Диаграмма "состав-свойство"
- •1.2.4 Диаграмма состояния сплавов железо-углерод.
- •1.3.Основные свойства и параметры материалов.
- •1.3.1 Механические и технологические свойства материалов и методы их определения
- •1.3.1.1 Определение твердости металлов и сплавов
- •1.3.2 Тепловые характеристики
- •1.3.3 Физико-химические характеристики
- •1.3.4 Электрофизические характеристики
- •1.3.5 Зонная структура твердых тел
- •2 Проводниковые материалы
- •2.1 Классификация проводниковых материалов
- •2.2 Электрические свойства проводниковых материалов
- •2.3 Материалы с высокой проводимостью
- •2.3.1 Медь и ее сплавы
- •2.3.2 Алюминий и его сплавы
- •2.3.3 Натрий
- •2.4 Материалы с высоким сопротивлением
- •2.4.1 Проволочные резистивные материалы
- •2.4.2. Пленочные резистивные материалы
- •2.4.3. Материалы для термопар
- •2.5 Проводниковые материалы и сплавы различного применения
- •2.5.1 Благородные металлы
- •2.5.2 Тугоплавкие металлы
- •2.5.3 Ртуть Hg
- •2.5.4. Легкоплавкие металлы
- •2.6 Сверхпроводники и криопроводники
- •2.6.1 Сверхпроводники
- •2.6.2 Криопроводники
- •2.7 Неметаллические проводниковые материалы
- •2.7.1 Материалы для электроугольных изделий
- •2.7.2 Проводящие и резистивные композиционные материалы
- •2.7.3 Контактолы
- •2.8 Материалы для подвижных контактов
- •2.8.1 Материалы для скользящих контактов
- •2.8.2 Материалы для разрывных контактов
- •2.9 Припои
- •2.10 Металлокерамика
- •2.11 Металлические покрытия
- •2.12 Проводниковые изделия
- •2.14 Порошковые конструкционные материалы
- •2.15 Композиционные конструкционные материалы
- •2.16 Металлы и сплавы для элементов конструкции полупроводниковых приборов и микросхем
- •3 Полупроводниковые материалы
- •3.1 Собственная и примесная электропроводность полупроводников
- •3.2 Примеси в полупроводниках
- •3.3 Основные параметры полупроводников
- •3.3.2 Удельное электрическое сопротивление - параметр, характеризующий способность материала проводить электрический ток:
- •3.3.6. Концентрация носителей заряда.
- •3.4 Влияние различных факторов на электропроводность полупроводников
- •3.4.1 Зависимость электропроводности полупроводников от температуры
- •3.4.2 Зависимость электропроводности полупроводников от внешнего электрического поля.
- •3.4.3 Влияние деформации на проводимость полупроводников
- •3.4.4 Влияние света на проводимость полупроводников
- •3.5 Производство полупроводниковых материалов
- •3.5.1. Выращивание монокристаллов кремния по методу Чохральского
- •3.5.2. Зонная плавка кремния и германия
- •3.6 Свойства полупроводниковых материалов и их применение
- •3.6.1 Классификация полупроводниковых материалов
- •3.6.2 Применение полупроводниковых материалов
- •3.6.3 Германий
- •3.6.4 Кремний
- •3.6.5 Карбид кремния
- •3.6.6. Полупроводниковые соединения aiii bv
- •3.6.7. Соединения aiibvi и другие халькогенидные полупроводники
- •4 Диэлектрические материалы
- •4.1 Общие сведения о диэлектриках
- •4.2 Поляризация диэлектриков
- •4.2.1 Электронная поляризация
- •4.2.2 Ионная поляризация
- •4.2.3 Дипольно-релаксационная поляризация
- •4.2.4 Ионно-релаксационная поляризация
- •4.2.5 Самопроизвольная (спонтанная) поляризация
- •4.3 Классификация диэлектриков по виду поляризации
- •4.4 Диэлектрическая проницаемость
- •4.4.1 Зависимость ε от температуры для полярных диэлектриков
- •4.4.2 Зависимость ε от температуры для неполярных диэлектриков
- •4.4.3 Зависимость ε от влажности
- •4.4.4 Зависимость ε от частоты f
- •4.5 Электропроводность диэлектриков
- •4.6 Диэлектрические потери
- •4.6.1 Виды диэлектрических потерь
- •4.7 Пробой диэлектриков
- •4.7.1 Основные понятия пробоя диэлектрика
- •4.7.2 Виды пробоев в диэлектриках
- •4.8 Физико-химические свойства диэлектриков
- •4.8.1 Теплопроводность
- •4.8.2 Химические свойства диэлектриков
- •4.9 Газообразные диэлектрические материалы
- •4.10 Жидкие диэлектрические материалы
- •4.11 Активные диэлектрики
- •4.11.1 Сегнетоэлектрики
- •4.11.2 Пьезоэлектрики
- •4.11.3 Электреты
- •4.11.4 Диэлектрики для оптической генерации
- •4.11.5 Электрооптические материалы
- •4.11 Твердые органические диэлектрики
- •4.11.1 Основные понятия о высокомолекулярных соединениях (полимерах)
- •4.11.2 Пластмассы
- •4.11.3 Компаунды
- •4.11.4 Лаки
- •4.11.5 Эпоксидные смолы
- •4.11.6 Клеи
- •4.12 Твердые неорганические диэлектрики
- •4.12.1 Неорганические стёкла
- •4.12.1.1 Классификация неорганических стекол
- •4.12.1.2 Кварцевое стекло
- •4.12.2 Ситаллы
- •4.12.3 Керамика, свойства, типы, применение
- •4.13 Диэлектрические материалы в микроэлектронике.
- •5 Магнитные материалы
- •5.1 Природа магнетизма
- •5.2 Основные параметры магнитных веществ
- •5.3 Классификация магнитных материалов
- •5.3.1 Слабомагнитные вещества
- •5.3.2 Сильномагнитные вещества
- •5.4 Магнитомягкие материалы
- •5.4.1 Технически чистое железо (низкоуглеродистая сталь)
- •5.4.2 Пермаллои
- •5.4.3 Аморфные магнитные материалы
- •5.4.4 Магнитодиэлектрики
- •5.4.5 Ферриты
- •5.5 Магнитотвёрдые материалы
- •5.5.1 Литые высококоэрцитивные сплавы
- •5.5.3 Магнитотвердые ферриты
- •5.5.4 Сплавы на основе редкоземельных металлов
- •5.5.5 Другие магнитотвердые металлы
- •5.6 Материалы специального назначения
3.6.7. Соединения aiibvi и другие халькогенидные полупроводники
Халькогениды - это соединения серы, селена, теллура с металлами. Наиболее изученными являются ПП халькогениды - сульфиды, селениды, теллуриды цинка, кадмия (AIIBVI) и свинца (AIVBVI).
Свойства халькогенидов еще в большей степени, чем в случае Si, Ge, AIIIBV, зависят от технологии. При повышенных температурах компоненты халькогенидов обладают резко отличающимися упругостями пара. Если в соединениях AIIIBV давление паров Рa«Pb (при повышенных температурах улетучивается, испаряется компонент В), то в халькогенидах возможны варианты: 1)Рa≈Pb(СdTe, ZnTe); 2)Pа<Рв (CdS, ZnTe, CdSe); 3)Ра«Рв(PbS, PbSe, PbTe), т.е. при повышенных температурах соединения AIIBVI разлагаются по реакции:
2АIIBVI → 2АII газ + B2VI газ
Важной особенностью соединений AIIBVI является то, что они могут проявлять электропроводность лишь одного типа независимо от характера легирования. Например, CdS, ZnS, CdSe, ZnSe являются ПП n-типа проводимости, а ZnТе - p-типа. И только CdTe может быть n- и p-типа проводимости. Таким образом, AIIBVI в технологическом отношении трудные объекты.
Применение халькогенидов связано с ярким проявлением фоторезистивных и люминесцентных свойств. Самым чувствительным фоторезистором CdS является е видимой части спектра: при освещении его сопротивление уменьшается в 104 - 106 раз.
В качестве люминофоров чаще всего используется ZnS и твердые растворы ZnS + ZnSe или ZnS + CdS. Эти катодолюминофоры используются для кинескопов черно-белых телевизоров, обладают высокой яркостью и светоотдачей в видимой области спектра.
В халькогенидах Рb при низких температурах происходят процессы излучательной рекомбинации носителей заряда и это используется для создания лазеров ИК-диапазона.
На базе PbTe изготавливают термоэлементы, работающие при температурах (300-700)°С, так как это соединение обладает высоким коэффициентом термоЭДС и малой теплопроводностью. Благодаря чувствительности к видимому свету соединения AIIBVI применяются в качестве материалов тонкопленочных солнечных элементов с КПД=10%.
Самым лучшим материалом для современных приборов ИК-техники является халькогенид типа AIIBVI - CdHgTe (КРТ). Он стабильно работает при температуре жидкого азота (-196°С), тогда как другие материалы требуют более глубокого охлаждения. КРТ - материал стратегического назначения. Обнаружение стартов ракет, наведение средств доставки оружия к цели, преобразование теплового (ночного) излучения в видимое, наблюдение и фотографирование местности из космоса через атмосферные окна ночью и в условиях: облачности - вот задачи, которые решает ИК-техника на базе КРТ. Но технология КРТ сложна из-за высокого давления паров Hg при плавлении, для его гомогенизации твердотельной диффузией необходимы отжиги в течение (30-50) суток, плохо воспроизводятся параметры, материал взрывоопасен.
Узкозонные селениды и теллуриды имеют очень высокую подвижность электронов, а значит, большие значения постоянной Холла и магнетосопротивления. Эти материалы с высокой чувствительностью к магнитному полю используются в датчиках Холла - в приборах для измерения напряженности постоянных и переменных магнитных полей, ваттметрах, генераторах электрических колебаний