
- •1 Физико-химические основы материаловедения 5
- •2 Проводниковые материалы 39
- •3 Полупроводниковые материалы 114
- •4 Диэлектрические материалы 136
- •5 Магнитные материалы 188
- •Введение
- •1 Физико-химические основы материаловедения
- •1 .1 Общие сведения о строении вещества
- •1.1.1 Типы химических связей
- •1.1.2 Агрегатные состояния вещества
- •1.1.3 Кристаллическое строение вещества
- •1.1.4 Анизотропия кристаллов. Индексы Миллера
- •1.1.5 Процесс кристаллизации веществ
- •1.1.6 Полиморфизм (аллотропия)
- •1.1.7 Виды дефектов в кристаллах
- •1.1.8 Влияние термической обработки на структуру свойства материалов
- •1.1.9 Влияние пластической деформации на структурные свойства материалов
- •1.2 Основные cbeдения о сплавах
- •1.2.1 Понятие о сплавах
- •1.2.2 Диаграммы состояния двойных сплавов
- •1.2.3 Диаграмма "состав-свойство"
- •1.2.4 Диаграмма состояния сплавов железо-углерод.
- •1.3.Основные свойства и параметры материалов.
- •1.3.1 Механические и технологические свойства материалов и методы их определения
- •1.3.1.1 Определение твердости металлов и сплавов
- •1.3.2 Тепловые характеристики
- •1.3.3 Физико-химические характеристики
- •1.3.4 Электрофизические характеристики
- •1.3.5 Зонная структура твердых тел
- •2 Проводниковые материалы
- •2.1 Классификация проводниковых материалов
- •2.2 Электрические свойства проводниковых материалов
- •2.3 Материалы с высокой проводимостью
- •2.3.1 Медь и ее сплавы
- •2.3.2 Алюминий и его сплавы
- •2.3.3 Натрий
- •2.4 Материалы с высоким сопротивлением
- •2.4.1 Проволочные резистивные материалы
- •2.4.2. Пленочные резистивные материалы
- •2.4.3. Материалы для термопар
- •2.5 Проводниковые материалы и сплавы различного применения
- •2.5.1 Благородные металлы
- •2.5.2 Тугоплавкие металлы
- •2.5.3 Ртуть Hg
- •2.5.4. Легкоплавкие металлы
- •2.6 Сверхпроводники и криопроводники
- •2.6.1 Сверхпроводники
- •2.6.2 Криопроводники
- •2.7 Неметаллические проводниковые материалы
- •2.7.1 Материалы для электроугольных изделий
- •2.7.2 Проводящие и резистивные композиционные материалы
- •2.7.3 Контактолы
- •2.8 Материалы для подвижных контактов
- •2.8.1 Материалы для скользящих контактов
- •2.8.2 Материалы для разрывных контактов
- •2.9 Припои
- •2.10 Металлокерамика
- •2.11 Металлические покрытия
- •2.12 Проводниковые изделия
- •2.14 Порошковые конструкционные материалы
- •2.15 Композиционные конструкционные материалы
- •2.16 Металлы и сплавы для элементов конструкции полупроводниковых приборов и микросхем
- •3 Полупроводниковые материалы
- •3.1 Собственная и примесная электропроводность полупроводников
- •3.2 Примеси в полупроводниках
- •3.3 Основные параметры полупроводников
- •3.3.2 Удельное электрическое сопротивление - параметр, характеризующий способность материала проводить электрический ток:
- •3.3.6. Концентрация носителей заряда.
- •3.4 Влияние различных факторов на электропроводность полупроводников
- •3.4.1 Зависимость электропроводности полупроводников от температуры
- •3.4.2 Зависимость электропроводности полупроводников от внешнего электрического поля.
- •3.4.3 Влияние деформации на проводимость полупроводников
- •3.4.4 Влияние света на проводимость полупроводников
- •3.5 Производство полупроводниковых материалов
- •3.5.1. Выращивание монокристаллов кремния по методу Чохральского
- •3.5.2. Зонная плавка кремния и германия
- •3.6 Свойства полупроводниковых материалов и их применение
- •3.6.1 Классификация полупроводниковых материалов
- •3.6.2 Применение полупроводниковых материалов
- •3.6.3 Германий
- •3.6.4 Кремний
- •3.6.5 Карбид кремния
- •3.6.6. Полупроводниковые соединения aiii bv
- •3.6.7. Соединения aiibvi и другие халькогенидные полупроводники
- •4 Диэлектрические материалы
- •4.1 Общие сведения о диэлектриках
- •4.2 Поляризация диэлектриков
- •4.2.1 Электронная поляризация
- •4.2.2 Ионная поляризация
- •4.2.3 Дипольно-релаксационная поляризация
- •4.2.4 Ионно-релаксационная поляризация
- •4.2.5 Самопроизвольная (спонтанная) поляризация
- •4.3 Классификация диэлектриков по виду поляризации
- •4.4 Диэлектрическая проницаемость
- •4.4.1 Зависимость ε от температуры для полярных диэлектриков
- •4.4.2 Зависимость ε от температуры для неполярных диэлектриков
- •4.4.3 Зависимость ε от влажности
- •4.4.4 Зависимость ε от частоты f
- •4.5 Электропроводность диэлектриков
- •4.6 Диэлектрические потери
- •4.6.1 Виды диэлектрических потерь
- •4.7 Пробой диэлектриков
- •4.7.1 Основные понятия пробоя диэлектрика
- •4.7.2 Виды пробоев в диэлектриках
- •4.8 Физико-химические свойства диэлектриков
- •4.8.1 Теплопроводность
- •4.8.2 Химические свойства диэлектриков
- •4.9 Газообразные диэлектрические материалы
- •4.10 Жидкие диэлектрические материалы
- •4.11 Активные диэлектрики
- •4.11.1 Сегнетоэлектрики
- •4.11.2 Пьезоэлектрики
- •4.11.3 Электреты
- •4.11.4 Диэлектрики для оптической генерации
- •4.11.5 Электрооптические материалы
- •4.11 Твердые органические диэлектрики
- •4.11.1 Основные понятия о высокомолекулярных соединениях (полимерах)
- •4.11.2 Пластмассы
- •4.11.3 Компаунды
- •4.11.4 Лаки
- •4.11.5 Эпоксидные смолы
- •4.11.6 Клеи
- •4.12 Твердые неорганические диэлектрики
- •4.12.1 Неорганические стёкла
- •4.12.1.1 Классификация неорганических стекол
- •4.12.1.2 Кварцевое стекло
- •4.12.2 Ситаллы
- •4.12.3 Керамика, свойства, типы, применение
- •4.13 Диэлектрические материалы в микроэлектронике.
- •5 Магнитные материалы
- •5.1 Природа магнетизма
- •5.2 Основные параметры магнитных веществ
- •5.3 Классификация магнитных материалов
- •5.3.1 Слабомагнитные вещества
- •5.3.2 Сильномагнитные вещества
- •5.4 Магнитомягкие материалы
- •5.4.1 Технически чистое железо (низкоуглеродистая сталь)
- •5.4.2 Пермаллои
- •5.4.3 Аморфные магнитные материалы
- •5.4.4 Магнитодиэлектрики
- •5.4.5 Ферриты
- •5.5 Магнитотвёрдые материалы
- •5.5.1 Литые высококоэрцитивные сплавы
- •5.5.3 Магнитотвердые ферриты
- •5.5.4 Сплавы на основе редкоземельных металлов
- •5.5.5 Другие магнитотвердые металлы
- •5.6 Материалы специального назначения
3.6.4 Кремний
Кремний в отличие от Ge является одним из самых распространенных элементов в земной коре (29,5%), занимая второе место после кислорода. Кремний, как и Ge , темно-серого цвета, с металлическим блеском, твердый, хрупкий, хорошо шлифуется, полируется, но в отличие от Ge является легким веществом (плотность 2,33 г/см3).
Атомы в кристалле кремния расположены так просторно, а объем междоузельных пустот настолько велик (~75%), что при плавлении происходит не увеличение объема, как у всех металлов, а значительное, на 9%, его уменьшение.
Рыхлая, открытая структура и достаточно сильная ковалентная связь - особенности строения кремния, которые объясняют многие его физико-химические свойства, приведенные ниже.
1. Оптимальное значение ширины запрещенной зоны, которая обусловила достаточно низкую концентрацию собственных носителей и высокую рабочую температуру.
2. Большой диапазон реально достижимых удельных сопротивлений в пределах от 10-3 Ом∙см (вырожденный) до 1x 105 (близкий к собственному).
3. Высокое значение модуля упругости, значительная жесткость (большая, чем, например, у стали).
4. Оптимально высокая температура плавления, следующая из высокого значения модуля упругости и энергии связи (ТПЛ = 1412°С).
5. Малая плотность (2,3 г/см3) и низкий ТКЛР 3 10-6 К-1.
6. Высокая теплопроводность (до 80 Вт/К∙м, что близко к коэффициенту теплопроводности железа) .
7. Тензочувствительность - существенное изменение удельного сопротивления при упругой деформации.
8. Высокая растворимость примесей, причем примеси несильно искажают решетку кристалла.
В химическом отношении Si при комнатной температуре относительно инертный материал. Он не растворим в воде, не реагирует со многими кислотами, а хорошо растворяется в смеси HN03 и НF и в кипящих щелочах. При нагревании на воздухе Si интенсивно окисляется с образованием SiO2 при температурах выше 900°С, а при Т = (1100-1300)°С соединяется с азотом с образованием нитрида кремния Si3N4 .
Соединения кремния SiO2 и Si3N4 обладают маскирующими свойствами, что используется при проведении локальных процессов диффузии и эпитаксии при изготовлении ИМС. Слой SiO2 толщиной 0,6 мкм может защищать Si при 1100°С в течение I ч от диффузии фосфора, а при диффузии бора достаточен слой SiO2 толщиной 0,1 мкм. Такие же тонкие слои Si3N4 при (1100-1200)°С оказываются непроницаемыми для донорных и акцепторных примесей при диффузионном легировании Si .
Слои SiO2 могут выполнять функции пассивирующего покрытия, т.е. защищать поверхность полупроводника, р-n -перехода от воздействия окружающей среды.
Двуокись Si, выращенная в атмосфере чистого сухого кислорода, обладает совершенной структурой, высокой электрической прочностью и может использоваться в качестве диэлектрика в МДП-структурах, а также в тонкопленочных конденсаторах гибридных ИМС.
Слои SiO2, травятся в водных растворах плавиковой кислоты НF.
Методами фотолитографии довольно просто можно в SiO2 вскрывать окна для локальной диффузии, эпитаксии, омических контактов (рисунок 3.13).
Рисунок 3.13
а) на монокристаллической подложке n-Si (I) выращен слой SiO2 (2), в котором вскрыто окно (3);
б) через окно проведена локальная диффузия акцепторной примеси (p-область-4) и сформирован тонкопленочный омический контакт (5) из Al.
В производстве больших интегральных схем (БИС) и сверхбольших (СБИС) все большее распространение получает поликристаллический Si , слои которого в зависимости от степени легирования, т.е. концентрации примесей, могут выполнять функции резистора, межсоединений (токопроводящих шин), контактов к эмиттеру и коллектору транзистора и быть надежной изоляцией между элементами ИМС.
Аморфный кремний пока удается получать лишь в виде тонких пленок при очень медленном распаде моносилана в тлеющем ВЧ-разряде, т. е. намного сложнее, чем монокристаллы. Однако необычные свойства его: большая ширина запрещенной зоны - до 2 эВ и высокое удельное сопротивление - до 1012 Ом∙см - обеспечивают этой модификации кремния длительные перспективы, особенно в связи с разработкой многоуровневых, объемных БИС и солнечных батарей.
Основной акцепторной примесью для Si является бор, так как обладает относительно малым коэффициентом диффузии в SiO2; галлий, алюминий примерно в 400 раз большим. Основной донорной примесью является фосфор, хотя SiO2 маскирует Si и от проникновения мышьяка As , сурьмы Sb. Но фосфор имеет в Si более высокий коэффициент диффузии, чем As и Sb и более высокую предельную растворимость, чем Sb.
Применение Si: ПП ИМС, выпрямительные, импульсные и СВЧ-диоды, НЧ и ВЧ, мощные и маломощные биполярные и полевые транзисторы с рабочей частотой до 10 ГГц (температурный диапазон выше, чем у Ge-приборов (см. таблицу 3.1), стабилитроны (U стабилизации = 3-400 В), тиристоры, фотодиоды, солнечные батареи (основные источники энергии космических аппаратов), датчики Холла, тензодатчики, детекторы ядерных излучений.
Кремний образует многие соединения с ценными свойствами, что используется в технологии полупроводниковых приборов и ИС.
Широко применяется диоксид кремния SiO2, в виде плавленого кварца - нагревостойкого и высокочистого материала. Из кварца изготавливаются тигли для плавки кремния, трубы для термообработки кремния, различные контейнеры, химическая посуда.
Карбид кремния SiC образуется при высокотемпературном взаимодействии кремния с углеродом. Это также термостойкое химическое соединение, которое используется главным образом для покрытий графитовых деталей, находящихся в рабочей камере, где обрабатывается кремний. Благодаря такому покрытию исключается загрязнение кремния углеродом, повышается срок службы графитовых деталей при высокой температуре.
Марки монокристаллического кремния в слитках по ГОСТ 19658-81.
ЭКДБ-2-1в - кремний, полученный по методу Чохральского (ЭК), дырочного (Д) типа проводимости, легированный бором (Б), номинал удельного электрического сопротивления 2 Ом∙см с отклонением по I группе (35%), номинал диаметра слитка по подгруппе "в" (102,5 мм), кристаллографическая ориентация плоскости торцевого слитка (III), так как отсутствует в обозначении индекс "м" (для ориентации (100) или "э" - для ориентации (013).
Обозначение приборов на основе Si начинается с буквы "К" (КД503 - диод, КСI39 - стабилитрон) или с цифры 2 (2Т605 - транзистор).
Для производства ИМС могут быть использованы готовые эпитаксиальные структуры, т.е. на монокристаллических подложках выращены методами эпитаксии эпитаксиальные слои, повторяющие структуру подложки, в которых в дальнейшем формируются все элементы ИМС (рисунок 3.14, а). Пример записи эпитаксиальной структуры:
100 (8КДБ-0,5)/(200 КЭС-0,01),
где 100 - диметр ПП пластины в мм; 8-толщина Si эпитаксиального слоя в мкм; КДБ-0,5 - кремний дырочной проводимости, легированный бором, удельное электрическое сопротивление 0,5 Ом/□; 200 - толщина монокристаллической Si пластины в мкм; КЭС-0,01 -кремний электронной проводимости, легированный сурьмой, удельное электрическое сопротивление 0,01 Ом/□.
Кремний - единственный материал, который удается наращивать эпитаксиально также и на инородные подложки (гетероэпитаксия), Структуры кремний на сапфире - КНС - обладают значительными преимуществами как основа ИС на комплементарных транзисторах - КМОП КНС, наименее энергоемких, самых быстродействующих и радиационностойких среди МОП ИС (рисунок 3.14, б).
Рисунок 3.14 – Эпитаксиальные структуры кремния
а – автоэпитаксиальная структура со скрытым слоем – АСС;
б – гетероэпитаксиальная структура кремния на сапфире - КНС