
- •1 Физико-химические основы материаловедения 5
- •2 Проводниковые материалы 39
- •3 Полупроводниковые материалы 114
- •4 Диэлектрические материалы 136
- •5 Магнитные материалы 188
- •Введение
- •1 Физико-химические основы материаловедения
- •1 .1 Общие сведения о строении вещества
- •1.1.1 Типы химических связей
- •1.1.2 Агрегатные состояния вещества
- •1.1.3 Кристаллическое строение вещества
- •1.1.4 Анизотропия кристаллов. Индексы Миллера
- •1.1.5 Процесс кристаллизации веществ
- •1.1.6 Полиморфизм (аллотропия)
- •1.1.7 Виды дефектов в кристаллах
- •1.1.8 Влияние термической обработки на структуру свойства материалов
- •1.1.9 Влияние пластической деформации на структурные свойства материалов
- •1.2 Основные cbeдения о сплавах
- •1.2.1 Понятие о сплавах
- •1.2.2 Диаграммы состояния двойных сплавов
- •1.2.3 Диаграмма "состав-свойство"
- •1.2.4 Диаграмма состояния сплавов железо-углерод.
- •1.3.Основные свойства и параметры материалов.
- •1.3.1 Механические и технологические свойства материалов и методы их определения
- •1.3.1.1 Определение твердости металлов и сплавов
- •1.3.2 Тепловые характеристики
- •1.3.3 Физико-химические характеристики
- •1.3.4 Электрофизические характеристики
- •1.3.5 Зонная структура твердых тел
- •2 Проводниковые материалы
- •2.1 Классификация проводниковых материалов
- •2.2 Электрические свойства проводниковых материалов
- •2.3 Материалы с высокой проводимостью
- •2.3.1 Медь и ее сплавы
- •2.3.2 Алюминий и его сплавы
- •2.3.3 Натрий
- •2.4 Материалы с высоким сопротивлением
- •2.4.1 Проволочные резистивные материалы
- •2.4.2. Пленочные резистивные материалы
- •2.4.3. Материалы для термопар
- •2.5 Проводниковые материалы и сплавы различного применения
- •2.5.1 Благородные металлы
- •2.5.2 Тугоплавкие металлы
- •2.5.3 Ртуть Hg
- •2.5.4. Легкоплавкие металлы
- •2.6 Сверхпроводники и криопроводники
- •2.6.1 Сверхпроводники
- •2.6.2 Криопроводники
- •2.7 Неметаллические проводниковые материалы
- •2.7.1 Материалы для электроугольных изделий
- •2.7.2 Проводящие и резистивные композиционные материалы
- •2.7.3 Контактолы
- •2.8 Материалы для подвижных контактов
- •2.8.1 Материалы для скользящих контактов
- •2.8.2 Материалы для разрывных контактов
- •2.9 Припои
- •2.10 Металлокерамика
- •2.11 Металлические покрытия
- •2.12 Проводниковые изделия
- •2.14 Порошковые конструкционные материалы
- •2.15 Композиционные конструкционные материалы
- •2.16 Металлы и сплавы для элементов конструкции полупроводниковых приборов и микросхем
- •3 Полупроводниковые материалы
- •3.1 Собственная и примесная электропроводность полупроводников
- •3.2 Примеси в полупроводниках
- •3.3 Основные параметры полупроводников
- •3.3.2 Удельное электрическое сопротивление - параметр, характеризующий способность материала проводить электрический ток:
- •3.3.6. Концентрация носителей заряда.
- •3.4 Влияние различных факторов на электропроводность полупроводников
- •3.4.1 Зависимость электропроводности полупроводников от температуры
- •3.4.2 Зависимость электропроводности полупроводников от внешнего электрического поля.
- •3.4.3 Влияние деформации на проводимость полупроводников
- •3.4.4 Влияние света на проводимость полупроводников
- •3.5 Производство полупроводниковых материалов
- •3.5.1. Выращивание монокристаллов кремния по методу Чохральского
- •3.5.2. Зонная плавка кремния и германия
- •3.6 Свойства полупроводниковых материалов и их применение
- •3.6.1 Классификация полупроводниковых материалов
- •3.6.2 Применение полупроводниковых материалов
- •3.6.3 Германий
- •3.6.4 Кремний
- •3.6.5 Карбид кремния
- •3.6.6. Полупроводниковые соединения aiii bv
- •3.6.7. Соединения aiibvi и другие халькогенидные полупроводники
- •4 Диэлектрические материалы
- •4.1 Общие сведения о диэлектриках
- •4.2 Поляризация диэлектриков
- •4.2.1 Электронная поляризация
- •4.2.2 Ионная поляризация
- •4.2.3 Дипольно-релаксационная поляризация
- •4.2.4 Ионно-релаксационная поляризация
- •4.2.5 Самопроизвольная (спонтанная) поляризация
- •4.3 Классификация диэлектриков по виду поляризации
- •4.4 Диэлектрическая проницаемость
- •4.4.1 Зависимость ε от температуры для полярных диэлектриков
- •4.4.2 Зависимость ε от температуры для неполярных диэлектриков
- •4.4.3 Зависимость ε от влажности
- •4.4.4 Зависимость ε от частоты f
- •4.5 Электропроводность диэлектриков
- •4.6 Диэлектрические потери
- •4.6.1 Виды диэлектрических потерь
- •4.7 Пробой диэлектриков
- •4.7.1 Основные понятия пробоя диэлектрика
- •4.7.2 Виды пробоев в диэлектриках
- •4.8 Физико-химические свойства диэлектриков
- •4.8.1 Теплопроводность
- •4.8.2 Химические свойства диэлектриков
- •4.9 Газообразные диэлектрические материалы
- •4.10 Жидкие диэлектрические материалы
- •4.11 Активные диэлектрики
- •4.11.1 Сегнетоэлектрики
- •4.11.2 Пьезоэлектрики
- •4.11.3 Электреты
- •4.11.4 Диэлектрики для оптической генерации
- •4.11.5 Электрооптические материалы
- •4.11 Твердые органические диэлектрики
- •4.11.1 Основные понятия о высокомолекулярных соединениях (полимерах)
- •4.11.2 Пластмассы
- •4.11.3 Компаунды
- •4.11.4 Лаки
- •4.11.5 Эпоксидные смолы
- •4.11.6 Клеи
- •4.12 Твердые неорганические диэлектрики
- •4.12.1 Неорганические стёкла
- •4.12.1.1 Классификация неорганических стекол
- •4.12.1.2 Кварцевое стекло
- •4.12.2 Ситаллы
- •4.12.3 Керамика, свойства, типы, применение
- •4.13 Диэлектрические материалы в микроэлектронике.
- •5 Магнитные материалы
- •5.1 Природа магнетизма
- •5.2 Основные параметры магнитных веществ
- •5.3 Классификация магнитных материалов
- •5.3.1 Слабомагнитные вещества
- •5.3.2 Сильномагнитные вещества
- •5.4 Магнитомягкие материалы
- •5.4.1 Технически чистое железо (низкоуглеродистая сталь)
- •5.4.2 Пермаллои
- •5.4.3 Аморфные магнитные материалы
- •5.4.4 Магнитодиэлектрики
- •5.4.5 Ферриты
- •5.5 Магнитотвёрдые материалы
- •5.5.1 Литые высококоэрцитивные сплавы
- •5.5.3 Магнитотвердые ферриты
- •5.5.4 Сплавы на основе редкоземельных металлов
- •5.5.5 Другие магнитотвердые металлы
- •5.6 Материалы специального назначения
2.5.2 Тугоплавкие металлы
К тугоплавким относят металлы с температурой плавления более 1700°С. Эти металлы, как правило, химически устойчивы при низких температурах, но при повышенных температурах активно взаимодействуют с атмосферой. Поэтому изделия из них эксплуатируют в вакууме или среде инертных газов (аргон Аr, азот N2 и др.). Механическая обработка тугоплавких металлов затруднена из-за их повышенной твердости и хрупкости.
Тугоплавкие металлы (вольфрам W, рений Re, молибден Мо, тантал Та, титан Ti, ниобий Nb, цирконий Zr) применяют в электровакуумной технике, полупроводниковом производстве и микроэлектронике, для подвижных контактов и в качестве материала для сверхпроводников. Основные свойства некоторых тугоплавких металлов приведены в таблице 2.6.
Таблица 2.6 – Основные свойства тугоплавких металлов
Параметр |
Ti |
Zr |
Nb |
Mo |
Та |
Re |
W |
Плотность D, кг/м3 |
4500 |
6500 |
8500 |
10200 |
16600 |
21400 |
19300 |
Температура плавления |
1680 |
1860 |
2415 |
2620 |
2970 |
3180 |
3380 |
Удельное электрическое сопротивление ρ, мкОм • м |
0,42 |
0,41 |
0,18 |
0,050 |
0,135 |
0,21 |
0,055 |
Температурный коэффициент: удельного электрического сопротивления |
44·10-4 |
45·10-4 |
30·10-4 |
46·10-4 |
38·10-4 |
32·10-4 |
46·10-4 |
ТКρ, К-1 |
|
|
|
|
|
|
|
линейного расширения ТКl, К-1 |
8·10-6
|
5,4·10-6
|
7,2·10-6
|
5,1·10-6
|
6,5·10-6
|
4,7·10-6
|
4,4·10-6
|
Вольфрам W. Вольфрам – светло-серый металл, который обладает следующими свойствами:
- наиболее высокая температура плавления;
- очень большая плотность;
- наименьшее значение температурного коэффициента линейного расширения ТКl изо всех чистых металлов, применяемых в вакуумной технике;
- сравнительно дорог, с трудом обрабатывается и поэтому применяется только там, где его нельзя заменить.
Сравнительно толстые вольфрамовые изделия с мелкокристаллической структурой очень хрупкие вследствие высокой прочности отдельно взятых кристаллов при очень слабом их сцеплении между собой.
Волокнистая структура металла, создаваемая ковкой и волочением, обеспечивает высокую механическую прочность и гибкость тонких вольфрамовых нитей, диаметр которых может быть менее 10 мкм. Применение вольфрама для изготовления нитей ламп накаливания было впервые предложено русским изобретателем А.Н.Лодыгиным в 1890 г.
Это свойство используют при изготовлении термически согласованных спаев вольфрама с тугоплавкими стеклами. Основная область применения вольфрама - изготовление нитей накала осветительных ламп, катодов прямого и косвенного накала мощных генераторных ламп, рентгеновских трубок, размыкающих контактов реле, испарителей для нанесения в вакууме тонких пленок различных материалов. Для контактов с большими значениями разрываемой мощности используют металлокерамические материалы на основе порошка вольфрама.
Рений Re. Рений – серовато-белый редкоземельный металл. В природе рений встречается в виде примеси в сульфидных минералах. Он обладает следующими свойствами:
- коррозионная стойкость (до температуры 1000°С не окисляется);
- малая испаряемость при высоких температурах в среде технического вакуума.
Рений применяется для покрытия вольфрамовых нитей с целью повышения срока службы. Покрытие наносят разложением летучих соединений рения в атмосфере водорода над вольфрамовой нитью, нагретой до температуры 2000°С.
Молибден Мо. Молибден – близкий по своим свойствам к вольфраму металл, но почти в 2 раза легче последнего. Он обладает следующими свойствами:
- самое низкое удельное электрическое сопротивление ρ из всех тугоплавких металлов;
- допустимая рабочая температура ниже, чем у вольфрама;
- окисление начинается с температуры 500°С.
Структура кованого и тянутого молибдена сходна со структурой образца вольфрама. Однако отожженный мелкозернистый молибден обладает хорошей пластичностью и его механическая обработка не вызывает особых затруднений.
Молибден применяют для изготовления анодов и сеток генераторных ламп, крючков для поддерживания вольфрамовых нитей, теплоотводов в корпусах мощных ВЧ и СВЧ полупроводниковых приборов, в качестве разрывных электрических контактов, в паре с вольфрамом для изготовления термопар, рассчитанных на измерения температур до 2000°С в инертных средах и вакууме.
Тантал Та. Тантал – серовато-белый металл, который обладает следующими свойствами:
- ковкость;
- вязкость;
- высокая пластичность даже при комнатной температуре;
- в отличие от вольфрама и молибдена допускает холодную механическую обработку и сварку;
- в качестве электровакуумного конструкционного материала выдерживает температуру до 1200°С;
- способен поглощать газы в электровакуумном приборе.
Прокатываниием получают танталовую фольгу для электролитических конденсаторов толщиной в несколько микрон.
Применяют также в качестве различных нагревателей и испарителей, используемых в технологии вакуумного нанесения тонких пленок. Ввиду высокой стоимости тантал используют для изготовления ответственных изделий сложной формы, работающих в вакууме в напряженном тепловом режиме.
Титан Ti. Титан обладает следующими свойствами:
- пластичность;
- сравнительно высокая механическая прочность;
- высокая газопоглощающая способность, особенно при нагревании до температуры 500°С.
Он получается термической диссоциацией йодистых соединений.
Титан применяется для порошкообразных покрытий молибденовых и вольфрамовых электродов электровакуумных приборов, работающих при высоких температурах.
Титановые сплавы образуются в результате легирования титана алюминием, железом, хромом, марганцем, оловом и другими и обладают следующими свойствами: низкая плотность, высокая коррозионная стойкость, прочность, жароупорность, низкие литейные свойства, удовлетворительно обрабатываются резанием твердо-сплавным инструментом, свариваются аргонодуговой и контактной сваркой. Некоторые титановые сплавы упрочняют термической обработкой.
Ниобий Nb. Ниобий - металл серовато-белого цвета, который обладает следующими свойствами:
- пластичность;
- хорошо поддается механической обработке;
- в слитках при комнатной температуре не корродирует, но его порошок заметно окисляется на воздухе.
Ниобий применяется для изготовления катодов генераторных ламп, анодов, управляющих сеток.
Цирконий Zr. Цирконий – металл, который в слитках похож на сталь, хорошо куется. Высокая концентрация циркониевой пыли в воздухе пожароопасна, так как порошкообразный цирконий при температуре свыше 75°С легко воспламеняется.
Тугоплавкие соединения циркония (карбиды, нитриды), обладающие сравнительно высокой электропроводностью, применяют для изготовления анодов и сеток электронных приборов, пленок для печатного монтажа.