
- •1 Физико-химические основы материаловедения 5
- •2 Проводниковые материалы 39
- •3 Полупроводниковые материалы 114
- •4 Диэлектрические материалы 136
- •5 Магнитные материалы 188
- •Введение
- •1 Физико-химические основы материаловедения
- •1 .1 Общие сведения о строении вещества
- •1.1.1 Типы химических связей
- •1.1.2 Агрегатные состояния вещества
- •1.1.3 Кристаллическое строение вещества
- •1.1.4 Анизотропия кристаллов. Индексы Миллера
- •1.1.5 Процесс кристаллизации веществ
- •1.1.6 Полиморфизм (аллотропия)
- •1.1.7 Виды дефектов в кристаллах
- •1.1.8 Влияние термической обработки на структуру свойства материалов
- •1.1.9 Влияние пластической деформации на структурные свойства материалов
- •1.2 Основные cbeдения о сплавах
- •1.2.1 Понятие о сплавах
- •1.2.2 Диаграммы состояния двойных сплавов
- •1.2.3 Диаграмма "состав-свойство"
- •1.2.4 Диаграмма состояния сплавов железо-углерод.
- •1.3.Основные свойства и параметры материалов.
- •1.3.1 Механические и технологические свойства материалов и методы их определения
- •1.3.1.1 Определение твердости металлов и сплавов
- •1.3.2 Тепловые характеристики
- •1.3.3 Физико-химические характеристики
- •1.3.4 Электрофизические характеристики
- •1.3.5 Зонная структура твердых тел
- •2 Проводниковые материалы
- •2.1 Классификация проводниковых материалов
- •2.2 Электрические свойства проводниковых материалов
- •2.3 Материалы с высокой проводимостью
- •2.3.1 Медь и ее сплавы
- •2.3.2 Алюминий и его сплавы
- •2.3.3 Натрий
- •2.4 Материалы с высоким сопротивлением
- •2.4.1 Проволочные резистивные материалы
- •2.4.2. Пленочные резистивные материалы
- •2.4.3. Материалы для термопар
- •2.5 Проводниковые материалы и сплавы различного применения
- •2.5.1 Благородные металлы
- •2.5.2 Тугоплавкие металлы
- •2.5.3 Ртуть Hg
- •2.5.4. Легкоплавкие металлы
- •2.6 Сверхпроводники и криопроводники
- •2.6.1 Сверхпроводники
- •2.6.2 Криопроводники
- •2.7 Неметаллические проводниковые материалы
- •2.7.1 Материалы для электроугольных изделий
- •2.7.2 Проводящие и резистивные композиционные материалы
- •2.7.3 Контактолы
- •2.8 Материалы для подвижных контактов
- •2.8.1 Материалы для скользящих контактов
- •2.8.2 Материалы для разрывных контактов
- •2.9 Припои
- •2.10 Металлокерамика
- •2.11 Металлические покрытия
- •2.12 Проводниковые изделия
- •2.14 Порошковые конструкционные материалы
- •2.15 Композиционные конструкционные материалы
- •2.16 Металлы и сплавы для элементов конструкции полупроводниковых приборов и микросхем
- •3 Полупроводниковые материалы
- •3.1 Собственная и примесная электропроводность полупроводников
- •3.2 Примеси в полупроводниках
- •3.3 Основные параметры полупроводников
- •3.3.2 Удельное электрическое сопротивление - параметр, характеризующий способность материала проводить электрический ток:
- •3.3.6. Концентрация носителей заряда.
- •3.4 Влияние различных факторов на электропроводность полупроводников
- •3.4.1 Зависимость электропроводности полупроводников от температуры
- •3.4.2 Зависимость электропроводности полупроводников от внешнего электрического поля.
- •3.4.3 Влияние деформации на проводимость полупроводников
- •3.4.4 Влияние света на проводимость полупроводников
- •3.5 Производство полупроводниковых материалов
- •3.5.1. Выращивание монокристаллов кремния по методу Чохральского
- •3.5.2. Зонная плавка кремния и германия
- •3.6 Свойства полупроводниковых материалов и их применение
- •3.6.1 Классификация полупроводниковых материалов
- •3.6.2 Применение полупроводниковых материалов
- •3.6.3 Германий
- •3.6.4 Кремний
- •3.6.5 Карбид кремния
- •3.6.6. Полупроводниковые соединения aiii bv
- •3.6.7. Соединения aiibvi и другие халькогенидные полупроводники
- •4 Диэлектрические материалы
- •4.1 Общие сведения о диэлектриках
- •4.2 Поляризация диэлектриков
- •4.2.1 Электронная поляризация
- •4.2.2 Ионная поляризация
- •4.2.3 Дипольно-релаксационная поляризация
- •4.2.4 Ионно-релаксационная поляризация
- •4.2.5 Самопроизвольная (спонтанная) поляризация
- •4.3 Классификация диэлектриков по виду поляризации
- •4.4 Диэлектрическая проницаемость
- •4.4.1 Зависимость ε от температуры для полярных диэлектриков
- •4.4.2 Зависимость ε от температуры для неполярных диэлектриков
- •4.4.3 Зависимость ε от влажности
- •4.4.4 Зависимость ε от частоты f
- •4.5 Электропроводность диэлектриков
- •4.6 Диэлектрические потери
- •4.6.1 Виды диэлектрических потерь
- •4.7 Пробой диэлектриков
- •4.7.1 Основные понятия пробоя диэлектрика
- •4.7.2 Виды пробоев в диэлектриках
- •4.8 Физико-химические свойства диэлектриков
- •4.8.1 Теплопроводность
- •4.8.2 Химические свойства диэлектриков
- •4.9 Газообразные диэлектрические материалы
- •4.10 Жидкие диэлектрические материалы
- •4.11 Активные диэлектрики
- •4.11.1 Сегнетоэлектрики
- •4.11.2 Пьезоэлектрики
- •4.11.3 Электреты
- •4.11.4 Диэлектрики для оптической генерации
- •4.11.5 Электрооптические материалы
- •4.11 Твердые органические диэлектрики
- •4.11.1 Основные понятия о высокомолекулярных соединениях (полимерах)
- •4.11.2 Пластмассы
- •4.11.3 Компаунды
- •4.11.4 Лаки
- •4.11.5 Эпоксидные смолы
- •4.11.6 Клеи
- •4.12 Твердые неорганические диэлектрики
- •4.12.1 Неорганические стёкла
- •4.12.1.1 Классификация неорганических стекол
- •4.12.1.2 Кварцевое стекло
- •4.12.2 Ситаллы
- •4.12.3 Керамика, свойства, типы, применение
- •4.13 Диэлектрические материалы в микроэлектронике.
- •5 Магнитные материалы
- •5.1 Природа магнетизма
- •5.2 Основные параметры магнитных веществ
- •5.3 Классификация магнитных материалов
- •5.3.1 Слабомагнитные вещества
- •5.3.2 Сильномагнитные вещества
- •5.4 Магнитомягкие материалы
- •5.4.1 Технически чистое железо (низкоуглеродистая сталь)
- •5.4.2 Пермаллои
- •5.4.3 Аморфные магнитные материалы
- •5.4.4 Магнитодиэлектрики
- •5.4.5 Ферриты
- •5.5 Магнитотвёрдые материалы
- •5.5.1 Литые высококоэрцитивные сплавы
- •5.5.3 Магнитотвердые ферриты
- •5.5.4 Сплавы на основе редкоземельных металлов
- •5.5.5 Другие магнитотвердые металлы
- •5.6 Материалы специального назначения
1.3.Основные свойства и параметры материалов.
1.3.1 Механические и технологические свойства материалов и методы их определения
Механические свойства материалов характеризуют возможность их использовать в изделиях, эксплуатируемых при воздействии механических нагрузок. Под действием механических нагрузок происходит деформация материала - изменение формы и размеров образца. Деформация связана с изменением относительного расположения частиц в материале. Наиболее простые виды деформирования - растяжение, сжатие, изгиб, сдвиг и кручение. Деформация может быть упругой и пластичной.
Основными признаками механических свойств являются прочность, твердость, пластичность, хрупкость, и вязкость материала. Прочность—способность материала сопротивляться воздействию внешних сил, не разрушаясь. Прочность определяется с помощью статического воздействия растяжения металла на специальных испытательных установках, называемых разрывными машинами. Для испытания изготавливают образцы в виде круглых стержней или пластин (рисунок 1.20).
Образцы головками закрепляются в зажимах разрывной машины. При растягивании будем фиксировать усилие F и абсолютное удлинение образца ∆ℓо= ℓр-ℓо , тогда получим диаграмму растяжения. Она имеет несколько характерных точек (рисунок 1.21).
Рисунок 1.20 – Образцы для испытаний на растяжения.
Рисунок 1.21 – Диаграмма растяжения
Участок ОА- удлинение образца прямо пропорционально нагрузке.
Участок ОВ- участок упругой деформации, т.е. после снятия нагрузки образец принимает свои прежние размеры.
Точка Т физический предел текучести σт- это наименьшее напряжение, при котором образец деформируется (течет) без заметного увеличения нагрузки.
σт=Fт/ Sо (1.1)
где Fт нагрузка, соответствующая физическому пределу текучести.
Sо -первоначальное сечение образца, материала.
(σт – для свинца 5-10 МПа.; для медно-цинковых сплавов -40-50 МПа.)
Точка Д- определяет предел прочности при растяжении σр в Па
σр = Fд/ Sо (1.2) Участок ДК –участок разрушения образца.
Пластичность—это свойство металла деформироваться без разрушения под действием внешних сил и сохранять новую форму после прекращения действия этих сил.
Пластичность оценивают по относительному удлинению образца и относительному сужению площади поперечного сечения образца.
О
тносительное
удлинение- это отношение абсолютного
удлинения к его первоначальной длине
в процентах,
(1.3)
где ℓР- длина образца в момент разрыва
Относительным сужением называется отношение абсолютного сужения к площади перечного сечения образца в момент разрыва к его первоначальной площади поперечного течения.
(1.4) (1.4)
где Sp-площадь поперечного сечения образца после разрыва.
У пластичных металлов Δℓ/ℓ0 и Ψ достигает нескольких десятков процентов, например, у Си 40% и 75%, у Аℓ-40% и85%, соответственно.
Вязкость—это способность поглощать механическую энергию и при этом проявлять значительную пластичность вплоть до разрушения, Вязкие материалы применяются для деталей, которые при работе подвергаются ударной нагрузке.
Ударная вязкость — это способность материала поглощать механическую энергию в процессе деформации и разрушения под действием ударной нагрузки.
Упругость—это свойство материала восстанавливать свою форму после прекращения действия внешних сил, вызывающих деформацию.
Модуль упругости — отношение напряжения в металле при растяжении к соответствующему удлинению в пределах упругой деформации. Модуль упругой деформации характеризует жесткость материала, его сопротивление деформации.
Хрупкость—это способность металла легко разрушаться при приложении резкого динамического усилия(вибрации, удара) хотя может выдерживать большие статические нагрузки. Для хрупких металлов характерно то, что величина относительного удлинения и относительного сужения близки к нулю. Хрупкими материалами являются хром, марганец, неорганическое стекло, пластмасса, кремний и др.
Технологические свойства и испытания металлов позволяют определить возможность производить те или иные технологические операции с данным металлом и применять его в тех или иных условиях.
Испытание на перегиб — определяет способность металла выдержать неоднократные перегибы для оценки качества листового материала проволоки, прутков.
Испытание на выдавливание- служит для определения способности листового материала к холодной штамповке,
Испытание на усадку определяет способность металла принимать заданную форму при сжатии. Этим испытаниям подвергают металлы, из которых изготавливаются заклепки, болты. Образец металла в виде цилиндра, высота которого равна 2Д, считается выдержавшим испытание, если при усадке до заданной высоты на нем не появляются трещины, изломы.
Испытание на свариваемость-2 бруска металла сваривают, а затем испытывают на изгиб или растяжение.
При хорошей свариваемости сопротивление разрыву по свариваемому изгибу должно составлять не< 80% от предела прочности цельного бруска.
Испытание на искру дает сведения о химическом составе стали. Когда обрабатывается сталь абразивными кругами то цвет искр зависит от состава стали. Твердая углеродистая сталь ослепит белыми рассыпающимися искрами, быстрорежущая сталь — темно-красными искрами.