
- •11. Графические характеристики случайных величин.
- •13.Второй вариант погрешностей.
- •25.Поверхностное натяжение
- •27.Закон Ома для переменного тока
- •29.Электрический диполь.
- •39. Принцип действия электронного усилителя, принципиальная схема на транзисторе.
- •44 Понятие об аналоговых, дискретных и комбинированных регистрирующих устройствах. Устройства отображения. Медицинское применение регистрирующих и отображающих устройств.
25.Поверхностное натяжение
На поверхностях раздела жидкости и ее насыщенного пара, двух несмешиваемых жидкостей, жидкости и твердого тела возникает сила, обусловленная различным межмолекулярным взаимодействи¬ем граничащих сред.
Каждая молекула, расположенная внутри объема жидкости, равномерно окружена соседними молекулами и взаимодействует с ними, но равнодействующая этих сил равна нулю. На молекулу, находящуюся вблизи границы двух сред, вследствие неоднороднос¬ти окружения действует сила, не скомпенсированная другими моле¬кулами жидкости. Поэтому для перемещения молекул из объема в поверхностный слой необходимо совершить работу.
Поверхностное натяжение определяется отношением работы, затраченной на создание некоторой поверхности жидкости при постоянной температуре к площади этой поверхности: σ =А/S (9.21)
Условием устойчивого равновесия жидкостей является минимум энергии поверхностного слоя, поэтому при отсутствии внешних сил или в состоянии невесомости жидкость стремится иметь мини¬мальную площадь поверхности при данном объеме и принимает форму шара.
Поверхностное натяжение может быть опре-делено не только энергетически. Стремление поверхностного слоя жидкости сократиться означает наличие в этом слое касательных сил — сил поверхностного натяжения. Если выбрать на поверхности жидкости некоторый
отрезок длиной L (рис. 9.8), то можно условно изобразить эти силы стрелками, перпендикулярными отрезку.
Поверхностное натяжение равно отношению силы поверхностного натяжения к длине отрезка, на котором действует эта сила: σ =F/L (9.22)
Поверхностное натяжение зависит от температуры. Вдали от критической температуры значение его убывает линейно при увеличении температуры. Снижения поверхностного натяжения можно достигнуть введением в жидкость поверхностно-активных веществ, уменьшающих энергию поверхностного слоя.
СМАЧИВАНИЕ И НЕСМАЧИВАНИЕ. КАПИЛЛЯРНЫЕ ЯВЛЕНИЯ
На границе соприкосновения различных сред может наблюдаться смачивание или несмачивание.
Рассмотрим поведение капли жидкости на поверхности другой, не смешивающейся с ней жидкости (рис. 9.9) и капли жидкости на поверхности твердого тела (рис. 9.10 и 9.11). На поверхностях раздела каждых двух сред ( 1 и 3, 2 и 1, 3 и 2) действу¬ют силы поверхностного натяжения. Если эти силы разделить на длину окружности капли, то получим соответ¬ственно σ13, σ21, σ32.
Угол θ между смачиваемой поверхностью и касательной к по¬верхности жидкости, отсчитываемый через нее, называют краевым. За меру смачивания принимают величину cos θ= (σ32 – σ13)/σ21 (9.23)
Если σ32> σ13 (рис. 9.10), т.е. силы взаимодействия между молекулами жидкости и твердого тела больше, чем между молеку-лами твердого тела и газа, то θ < π/2 и жидкость смачивает твер¬дое тело, поверхность которого в этом случае называется гидрофиль¬ной В случае σ32< σ13 (рис. 9.11) θ > π/2, жидкость не смачивает тела, поверхность его в этом случае называют гидрофобной. Несма¬чивающая жидкость не протекает через малые отверстия в твердом теле. При σ32 – σ13 = σ21 межмолекулярные силы полностью ском¬пенсированы (θ= 0). В этом случае равновесие не может наступить и капля растекается по поверхности твердого тела до тех пор, пока не покроет всей ее поверхности или не образуется мономолекуляр¬ный слой. Такой случай является идеальным смачиванием. К нему с некоторым приближением можно отнести растекание спирта или воды по чистой поверхности стекла, нефти по воде и пр.
Под действием сил поверхностного натяжения поверхностный слой жидкости искривлен и оказывает дополнительное по отноше¬нию к внешнему давление Др. Поверхностный слой подобен упру¬гой оболочке, например резиновой пленке. Результирующая сил поверхностного натяжения искривленной поверхности направлена в сторону вогнутости (к центру кривизны). В случае сферической поверхности, радиус кривизны которой г, дополнительное давление Δp=2 σ/r (9.24)
Искривление поверхности (мениск), в частности, возникает в узких (капиллярных) трубках в результате смачивания или несма-чивания жидкостью их поверхности. При смачивании образуется вогнутый мениск (рис. 9.12). Силы давления направлены от жид¬кости наружу, т.е. вверх, и обусловливают подъем жидкости в капилляре. Это равновесное состояние, показанное на рисунке, наступает тогда, когда давление pgh уравновесит Δр.
Δp=2 σ cosθ /R (9.25)
pgh=2 σ cosθ /R
h=2 σ cosθ /(Rpg) (9.26)
В случае несмачивания cos θ < 0 и формула (9.26) покажет высо¬ту опускания жидкости в капилляре.
Капиллярные явления определяют условия конденсации паров, кипения жидкостей, кристаллизации и т.п. Так, например, на молекулу пара (рис. 9.13; точка А) над вогнутым мениском жидкос¬ти действует больше молекул жидкости и, следовательно, большая сила, чем при выпуклом мениске. Это хорошо видно из рис. 9.13, на котором пунктиром условно показана сфера молекулярного действия, а штрихом — объемы жидкости, молекулы которых при-тягивают выделенную молекулу пара. В результате этого возникает капиллярная конденсация в смачиваемых тонких трубках даже при сравнительно малой влажности воздуха. Благодаря этому пористые вещества могут задерживать значительное количество жидкости из паров, что приводит к увлажнению белья, ваты в сырых помещени-ях, затрудняет сушку гигроскопических тел, способствует удержа¬нию влаги в почве и т.п. Наоборот, несмачивающие жидкости не проникают в пористые тела. С этим связана, например, непроницае¬мость для воды перьев птиц, смазанных жиром.
Рассмотрим поведение пузырька воздуха, находящегося в капил¬ляре с жидкостью. Если давление жидкости на пузырек с разных сторон одинаково, то оба мениска пузырька будут иметь одинако¬вый радиус кривизны (рис. 9.14, а). При избыточном давлении с одной из сторон, например при движении жидкости, мениски де¬формируются, изменятся их радиусы кривизны (рис. 9.14, б), до¬полнительное давление Δр с разных сторон станет неодинаковым. Это приведет к такому воздействию на жидкость со стороны пу¬зырька воздуха (газа), которое затруднит или прекратит движение жидкости. Такие явления могут происходить в кровеносной системе человека.
Попавшие в кровь пузырьки воздуха могут закупорить мелкий сосуд и лишить кровоснабжения какой-либо орган. Это явление, называемое эмболией, может привести к серьезному функционально¬му расстройству или даже летальному исходу. Так воздушная эмбо¬лия может возникнуть при ранении крупных вен: проникший в ток крови воздух образует воздушный пузырь, препятствующий про¬хождению крови. Пузырьки воздуха не должны попадать в вены при внутривенных вливаниях.
Газовые пузырьки в крови могут появиться у водолазов при быстром подъеме с большой глубины на поверхность, у летчиков и космонавтов при разгерметизировании кабины или скафандра на большой высоте (газовая эмболия). Это обусловлено переходом газов крови из растворенного состояния в свободное — газообразное в результате понижения окружающего атмосферного давления. Ведущая роль в образовании газовых пузырьков при уменьшении давления принадлежит азоту, так как он обусловливает основную часть общего давления газов в крови и не участвует в газообмене организма и окружающего воздуха.
26. Зако́н Гу́ка — уравнение теории упругости, связывающее напряжение и деформацию упругой среды
Поскольку закон Гука записывается для малых напряжений и деформаций, он имеет вид простой пропорциональности. В словесной форме закон звучит следующим образом:Сила упругости, возникающая в теле при его деформации, прямо пропорциональна величине этой деформации
Для тонкого растяжимого стержня закон Гука имеет вид:
Здесь
— сила, которой растягивают (сжимают)
стержень
,
— абсолютное удлинение (сжатие) стержня,
а
— коэффициент упругости (или жёсткости).
Коэффициент
упругости зависит как от свойств
материала, так и от размеров стержня.
Можно выделить зависимость от размеров
стержня (площади поперечного сечения
и длины
)
явно, записав коэффициент упругости
как
Величина
называется модулем упругости первого
рода или модулем Юнга и является
механической характеристикой материала.
Также при расчёте прямых стержней применяют запись закона Гука в относительной форме
Следует иметь в виду, что закон Гука выполняется только при малых деформациях. При превышении предела пропорциональности связь между напряжениями и деформациями становится нелинейной. Для многих сред закон Гука неприменим даже при малых деформациях.
Электри́чество — совокупность явлений, обусловленных существованием, взаимодействием и движением электрических зарядов.
Электрический заряд — это свойство тел (количественно характеризуемое физической величиной того же названия), проявляющееся прежде всего в способности создавать вокруг себя электрическое поле и посредством него оказывать воздействие на другие заряженные (то есть обладающие электрическим зарядом) тела[7]. Электрические заряды разделяют на положительные и отрицательные (выбор, какой именно заряд назвать положительным, а какой отрицательным, считается в науке чисто условным, однако этот выбор уже исторически сделан и теперь — хоть и условно — за каждым из зарядов закреплен вполне определенный знак). Тела, заряженные зарядом одного знака, отталкиваются, а противоположно заряженные — притягиваются. При движении заряженных тел (как макроскопических тел, так и микроскопических заряженных частиц, переносящих электрический ток в проводниках) возникает магнитное поле и имеют, таким образом, место явления, позволяющие установить родство электричества и магнетизма (электромагнетизм) (Эрстед, Фарадей, Максвелл). В структуре материи электрический заряд как свойство тел восходит к заряженным элементарным частицам, например, электрон имеет отрицательный заряд, а протон и позитрон — положительный.
Разделы электроники, в которых рассматриваются особенности применения электронных систем для решения медико-биологических задач, а также устройство соответствующей аппаратуры, получили название медицинской электроники. Она основывается на сведениях из физики, математики, техники, медицины, биологии, физиологии и других наук, она включает в себя биологическую и физиологическую электронику. Существуют устройства для получения, передачи и регистрации медико-биологической информации; электронные устройства, обеспечивающие дозирующее воздействие на организм различными физическими факторами; кибернетические электронные устройства