- •Е.В.Михеева, н.П.Пикула, м.И.Тартынова физическая химия
- •Введение
- •1. Химическая термодинамика Основные понятия химической термодинамики
- •Первое начало термодинамики
- •Формулировки первого начала термодинамики
- •Вычисление работы расширения идеальных газов в термодинамических процессах
- •Термохимия. Закон Гесса
- •Условия выполнения закона Гесса
- •Термодинамическое обоснование закона Гесса
- •Связь между Qp и qv
- •Следствия из закона Гесса. Методы расчета тепловых эффектов химических реакций
- •1. Расчет по стандартным теплотам образования
- •2. Расчет по стандартным теплотам сгорания
- •Метод термохимических уравнений
- •4. Метод термохимических схем
- •Теплоемкость
- •Теплоемкость идеального газа
- •Теплоемкость жидких и твердых тел
- •Эмпирические правила расчета теплоемкости
- •Влияние температуры на теплоемкость
- •Зависимость теплового эффекта химической реакции от температуры. Закон Кирхгофа
- •Исследование уравнения Кирхгофа
- •Расчет тепловых эффектов химических реакций по уравнению Кирхгофа
- •Второе начало термодинамики
- •Основные понятия и определения
- •Второе начало термодинамики. Энтропия
- •Формулировки второго начала термодинамики
- •Физический смысл энтропии
- •Статистическая природа второго начала термодинамики
- •Математическая запись второго начала термодинамики для обратимых процессов
- •Математическая запись второго начала термодинамики для необратимых процессов
- •Изменение энтропии как критерий направления процесса в изолированной системе
- •Расчет изменения энтропии в различных процессах
- •6. Расчет изменения энтропии для химической реакции по значениям стандартных абсолютных энтропий
- •Термодинамические потенциалы
- •Энергия Гиббса Физический смысл энергии Гиббса
- •Энергия Гиббса как критерий направления процесса
- •Расчет изменения энергии Гиббса в различных процессах
- •Энергия Гельмгольца Физический смысл энергии Гельмгольца
- •Энергия Гельмгольца как критерий направления процесса
- •Расчет изменения энергии Гельмгольца в различных процессах
- •1. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия n моль идеального газа
- •2. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия жидких и твердых тел
- •3. Расчет изменения энергии Гельмгольца в обратимо работающем электрохимическом элементе
- •Характеристические функции. Уравнения Гиббса – Гельмгольца
- •Химический потенциал
- •Условие равновесия в системе с переменным числом моль
- •Зависимость химического потенциала от давления
- •1. Область малых давлений (идеальный газ)
- •2. Область высоких давлений (реальные газы)
- •2. Химическое равновесие
- •Закон действующих масс
- •Уравнение изотермы химической реакции
- •Определение направления процесса по изотерме химической реакции
- •Уравнение химического сродства. Стандартная энергия Гиббса реакции
- •Различные способы выражения константы равновесия
- •Зависимость константы равновесия от температуры
- •Интегрирование уравнения изобары химической реакции
- •Влияние давления и температуры на химическое равновесие. Принцип Ле-Шателье
- •1. Влияние давления на смещение химического равновесия
- •2. Влияние температуры на равновесие химической реакции
- •Гетерогенное химическое равновесие
- •Расчет химического равновесия. Термическая диссоциация
- •3. Фазовое равновесие Основные понятия и определения
- •Основной закон фазового равновесия. Правило фаз Гиббса
- •Фазовое равновесие в однокомпонентной системе. Диаграммы состояния однокомпонентных систем
- •Уравнение Клапейрона - Клаузиуса
- •Применение уравнения Клапейрона – Клаузиуса к процессам испарения и возгонки
- •Расчет теплоты испарения и возгонки по уравнению Клапейрона – Клаузиуса
- •Однокомпонентные гетерогенные системы
- •Диаграмма состояния воды
- •Диаграмма состояния серы
- •Фазовое равновесие в двухкомпонентной системе. Диаграммы состояния двухкомпонентных систем Физико-химический анализ. Термический анализ
- •Фазовые диаграммы состояния двухкомпонентных систем
- •Диаграмма состояния системы с эвтектикой
- •Определение количественных соотношений между фазами. Правило рычага
- •Химические соединения
- •Фазовая диаграмма с конгруэнтно плавящимся химическим соединением
- •Фазовая диаграмма с инконгруэнтно плавящимся химическим соединением
- •Твердые растворы
- •Фазовая диаграмма с неограниченной растворимостью компонентов в твердом состоянии
- •Фазовые диаграммы с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграммы состояния с ограниченной растворимостью компонентов с эвтектикой (I типа)
- •Диаграммы состояния с ограниченной растворимостью компонентов с перитектикой (II типа)
- •Диаграммы состояния эвтектического типа с полиморфизмом компонентов
- •Сложные диаграммы состояния Диаграмма плавкости системы Al – Ni
- •Диаграмма состояния системы Fe-Fe3c
- •4. Растворы Общая характеристика растворов
- •Различные способы выражения концентрации растворов
- •Парциальные молярные величины и их значение в термодинамике растворов
- •Основные соотношения между парциальными молярными величинами
- •Аддитивные и неаддитивные свойства растворов
- •Типы растворов
- •Идеальные растворы
- •Предельно разбавленные растворы
- •Неидеальные растворы
- •Давление насыщенного пара компонента над раствором
- •Повышение температуры кипения растворов нелетучих веществ
- •Понижение температуры замерзания растворов нелетучих веществ
- •Осмотическое давление раствора
- •5. Электрохимия
- •Константа диссоциации слабого электролита
- •Ионное произведение воды. РН раствора
- •Сильные электролиты
- •Электрическая проводимость растворов электролитов
- •Кондуктометрия
- •Электролиз
- •Правила записи реакций на электродах при электролизе
- •Законы Фарадея
- •Числа переноса
- •Электродвижущие силы электрохимических элементов Основные понятия и определения
- •Правила записи электрохимических элементов
- •Электродные потенциалы
- •Типы электродов
- •Электроды первого рода
- •Электроды второго рода
- •Связь между электродами первого и второго рода
- •Окислительно-восстановительные электроды
- •Электрохимические элементы
- •Химические цепи
- •Химические цепи с двумя электролитами
- •Химические цепи с одним электролитом
- •Концентрационные цепи
- •Концентрационные цепи без переноса ионов
- •Концентрационные цепи c переносом ионов
- •6. Химическая кинетика
- •Основные понятия химической кинетики
- •Скорость химической реакции
- •Закон действующих масс
- •Формальная кинетика
- •Решение кинетических задач методами формальной кинетики
- •Односторонние реакции первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Зависимость скорости реакции от температуры
- •Методы определения энергии активации
- •Теории химической кинетики
- •Теория активных столкновений
- •Теория активированного комплекса
- •7. Катализ Основные понятия. Основные свойства катализатора
- •Гомогенный катализ
- •Гетерогенный катализ
- •8. Дисперсные системы Основные понятия и определения
- •Признаки объектов коллоидной химии
- •Специфические особенности высокодисперсных систем
- •Классификации дисперсных систем
- •1. Классификация по размерам частиц дисперсной фазы
- •2. Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.
- •9. Поверхностные явления Термодинамика поверхностных явлений
- •Поверхностное натяжение Физический смысл поверхностного натяжения
- •Термодинамическое определение поверхностного натяжения
- •Влияние температуры
- •Влияние природы граничащих фаз
- •Смачивание
- •Анализ уравнения Юнга
- •Флотация
- •Особенности искривленной поверхности раздела фаз
- •Капиллярное давление. Течение жидкости в капиллярах
- •Анализ уравнения Жюрена
- •Адсорбция Основные понятия и определения
- •Классификации адсорбции
- •1. Классификация по природе границы раздела
- •2.Классификация по типу взаимодействия адсорбата и адсорбента
- •Основные характеристики адсорбции
- •Основные экспериментальные зависимости адсорбции
- •Адсорбция на границе твердое тело – газ Теория мономолекулярной адсорбции Лэнгмюра Основные положения
- •Расчет констант уравнения Лэнгмюра
- •Адсорбция на границе жидкость – газ Особенность границы раздела жидкой и газообразной фаз
- •Фундаментальное уравнение адсорбции Гиббса
- •Свойства поверхностно-активных (пав) и поверхностно-инактивных (пив) веществ
- •Строение адсорбционного слоя на границе раствор - газ
- •Перечень используемой литературы
- •Содержание
8. Дисперсные системы Основные понятия и определения
Большинство веществ и материалов, возникающих естественным или создаваемых искусственным путем, находятся в раздробленном (дисперсном) состоянии. Реальный металлический расплав рассматривают как дисперсную систему в которой дисперсная фаза (суб- и микроскопические частицы твердой фазы – оксиды, нитриды. Сульфиды и др.) обладает чрезвычайно большой поверхностью раздела. По приближенным оценкам в 1 см3 жидкой стали содержится несколько миллионов твердых частиц.
Особые свойства веществ и материалов, обусловленные их раздробленностью изучает коллоидная химия – наука о дисперсных системах и поверхностных явлениях.
Поверхностные явления – это совокупность явлений, связанных с физическими особенностями границ раздела (поверхностных слоев) между соприкасающимися фазами. Поверхностные явления обусловлены тем, что молекулы и атомы в поверхностных слоях образуют особую структуру, а вещество принимает особое состояние, отличающееся по свойствам от его состояния в объемах этих фаз. Таким образом, коллоидное состояние – состояние вещества в поверхностных слоях, характеризуемое особыми свойствами. Коллоидное состояние проявляется тем сильнее, чем больше дисперсность вещества.
Дисперсными системами являются наиболее типичные и сложные объекты коллоидной химии, потому что в них проявляется все многообразие поверхностных явлений. Дисперсные системы – гетерогенные системы, в которых одна из фаз находится в дисперсном (раздробленном состоянии). Всякая дисперсная система состоит из дисперсной фазы и дисперсионной среды.
Дисперсная система
Дисперсная фаза
(раздробленная
часть
дисперсной
системы)
Дисперсионная
среда
(непрерывная
часть дисперсной системы)
Признаки объектов коллоидной химии
Для объектов коллоидной химии характерны два основных признака, сформулированных одним из основоположников отечественной коллоидной химии Н.П.Песковым: гетерогенность и дисперсность.
Гетерогенность (многофазность) указывает на наличие межфазной поверхности и поверхностного слоя. Количественной характеристикой гетерогенности является величина поверхностного натяжения (удельной поверхностной энергии) на границе раздела фаз. Чем сильнее выражена гетерогенность и чем сильнее по природе отличаются соприкасающиеся фазы, тем больше поверхностное натяжение.
Дисперсность (раздробленность) определяется размерами и геометрией частиц. Частицы могут быть сферическими, цилиндрическими, кубическими, а чаще всего имеют неправильную форму.
Мерой дисперсности может служить:
Поперечный размер частиц (а) – диаметр для сферических частиц (d) и длина ребра для кубических частиц (l).
Дисперсность (D) – величина, обратная поперечному размеру частицы: D=1/a.
Удельная поверхность (Sуд) – межфазная поверхность, приходящаяся на единицу объема или массы дисперсной фазы:
; или
. (8.1)
Удельная поверхность связана с размером (дисперсностью) и формой частиц:
Частицы сферической формы |
|
Частицы цилиндрической формы |
|
Частицы кубической формы |
|
Таким образом, удельная поверхность прямо пропорциональна дисперсности D, и обратно пропорциональна поперечному размеру частицы а.
Пример 8.1. Дисперсность частиц коллоидного золота 108 м-1. Принимая частицы золота в виде кубиков определить, какую поверхность они могут покрыть, если их плотно уложить в один слой. Масса коллоидных частиц золота 1 г. Плотность золота 19,6·103 кг/м3.
Решение:
1.Общая поверхность частиц коллоидного золота равна S=Sуд·V.
2. Удельная поверхность кубических частиц Sуд=6D.
3. Объем золота равен V=m/ρ.
4. Тогда общая площадь поверхности составит:
.
Рис. 8.1. Зависимость удельной поверхности системы от размера частиц: I – истинные растворы, II – высокодисперсные (коллоидные) системы; III – среднедисперсные системы; IV – грубодисперсные системы. |
При увеличении дисперсности, то есть при уменьшении размера частиц вещества, его удельная поверхность резко возрастает (рис.8.1) По величине удельной поверхности коллоидные системы занимают особое положение среди дисперсных систем. Это наглядно показано на диаграмме, изображающей резкое увеличение удельной поверхности при уменьшении размеров частиц до коллоидных размеров. В связи с резким увеличением удельной поверхности высокодисперсные системы обладают рядом специфических особенностей. |
