- •Е.В.Михеева, н.П.Пикула, м.И.Тартынова физическая химия
- •Введение
- •1. Химическая термодинамика Основные понятия химической термодинамики
- •Первое начало термодинамики
- •Формулировки первого начала термодинамики
- •Вычисление работы расширения идеальных газов в термодинамических процессах
- •Термохимия. Закон Гесса
- •Условия выполнения закона Гесса
- •Термодинамическое обоснование закона Гесса
- •Связь между Qp и qv
- •Следствия из закона Гесса. Методы расчета тепловых эффектов химических реакций
- •1. Расчет по стандартным теплотам образования
- •2. Расчет по стандартным теплотам сгорания
- •Метод термохимических уравнений
- •4. Метод термохимических схем
- •Теплоемкость
- •Теплоемкость идеального газа
- •Теплоемкость жидких и твердых тел
- •Эмпирические правила расчета теплоемкости
- •Влияние температуры на теплоемкость
- •Зависимость теплового эффекта химической реакции от температуры. Закон Кирхгофа
- •Исследование уравнения Кирхгофа
- •Расчет тепловых эффектов химических реакций по уравнению Кирхгофа
- •Второе начало термодинамики
- •Основные понятия и определения
- •Второе начало термодинамики. Энтропия
- •Формулировки второго начала термодинамики
- •Физический смысл энтропии
- •Статистическая природа второго начала термодинамики
- •Математическая запись второго начала термодинамики для обратимых процессов
- •Математическая запись второго начала термодинамики для необратимых процессов
- •Изменение энтропии как критерий направления процесса в изолированной системе
- •Расчет изменения энтропии в различных процессах
- •6. Расчет изменения энтропии для химической реакции по значениям стандартных абсолютных энтропий
- •Термодинамические потенциалы
- •Энергия Гиббса Физический смысл энергии Гиббса
- •Энергия Гиббса как критерий направления процесса
- •Расчет изменения энергии Гиббса в различных процессах
- •Энергия Гельмгольца Физический смысл энергии Гельмгольца
- •Энергия Гельмгольца как критерий направления процесса
- •Расчет изменения энергии Гельмгольца в различных процессах
- •1. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия n моль идеального газа
- •2. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия жидких и твердых тел
- •3. Расчет изменения энергии Гельмгольца в обратимо работающем электрохимическом элементе
- •Характеристические функции. Уравнения Гиббса – Гельмгольца
- •Химический потенциал
- •Условие равновесия в системе с переменным числом моль
- •Зависимость химического потенциала от давления
- •1. Область малых давлений (идеальный газ)
- •2. Область высоких давлений (реальные газы)
- •2. Химическое равновесие
- •Закон действующих масс
- •Уравнение изотермы химической реакции
- •Определение направления процесса по изотерме химической реакции
- •Уравнение химического сродства. Стандартная энергия Гиббса реакции
- •Различные способы выражения константы равновесия
- •Зависимость константы равновесия от температуры
- •Интегрирование уравнения изобары химической реакции
- •Влияние давления и температуры на химическое равновесие. Принцип Ле-Шателье
- •1. Влияние давления на смещение химического равновесия
- •2. Влияние температуры на равновесие химической реакции
- •Гетерогенное химическое равновесие
- •Расчет химического равновесия. Термическая диссоциация
- •3. Фазовое равновесие Основные понятия и определения
- •Основной закон фазового равновесия. Правило фаз Гиббса
- •Фазовое равновесие в однокомпонентной системе. Диаграммы состояния однокомпонентных систем
- •Уравнение Клапейрона - Клаузиуса
- •Применение уравнения Клапейрона – Клаузиуса к процессам испарения и возгонки
- •Расчет теплоты испарения и возгонки по уравнению Клапейрона – Клаузиуса
- •Однокомпонентные гетерогенные системы
- •Диаграмма состояния воды
- •Диаграмма состояния серы
- •Фазовое равновесие в двухкомпонентной системе. Диаграммы состояния двухкомпонентных систем Физико-химический анализ. Термический анализ
- •Фазовые диаграммы состояния двухкомпонентных систем
- •Диаграмма состояния системы с эвтектикой
- •Определение количественных соотношений между фазами. Правило рычага
- •Химические соединения
- •Фазовая диаграмма с конгруэнтно плавящимся химическим соединением
- •Фазовая диаграмма с инконгруэнтно плавящимся химическим соединением
- •Твердые растворы
- •Фазовая диаграмма с неограниченной растворимостью компонентов в твердом состоянии
- •Фазовые диаграммы с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграммы состояния с ограниченной растворимостью компонентов с эвтектикой (I типа)
- •Диаграммы состояния с ограниченной растворимостью компонентов с перитектикой (II типа)
- •Диаграммы состояния эвтектического типа с полиморфизмом компонентов
- •Сложные диаграммы состояния Диаграмма плавкости системы Al – Ni
- •Диаграмма состояния системы Fe-Fe3c
- •4. Растворы Общая характеристика растворов
- •Различные способы выражения концентрации растворов
- •Парциальные молярные величины и их значение в термодинамике растворов
- •Основные соотношения между парциальными молярными величинами
- •Аддитивные и неаддитивные свойства растворов
- •Типы растворов
- •Идеальные растворы
- •Предельно разбавленные растворы
- •Неидеальные растворы
- •Давление насыщенного пара компонента над раствором
- •Повышение температуры кипения растворов нелетучих веществ
- •Понижение температуры замерзания растворов нелетучих веществ
- •Осмотическое давление раствора
- •5. Электрохимия
- •Константа диссоциации слабого электролита
- •Ионное произведение воды. РН раствора
- •Сильные электролиты
- •Электрическая проводимость растворов электролитов
- •Кондуктометрия
- •Электролиз
- •Правила записи реакций на электродах при электролизе
- •Законы Фарадея
- •Числа переноса
- •Электродвижущие силы электрохимических элементов Основные понятия и определения
- •Правила записи электрохимических элементов
- •Электродные потенциалы
- •Типы электродов
- •Электроды первого рода
- •Электроды второго рода
- •Связь между электродами первого и второго рода
- •Окислительно-восстановительные электроды
- •Электрохимические элементы
- •Химические цепи
- •Химические цепи с двумя электролитами
- •Химические цепи с одним электролитом
- •Концентрационные цепи
- •Концентрационные цепи без переноса ионов
- •Концентрационные цепи c переносом ионов
- •6. Химическая кинетика
- •Основные понятия химической кинетики
- •Скорость химической реакции
- •Закон действующих масс
- •Формальная кинетика
- •Решение кинетических задач методами формальной кинетики
- •Односторонние реакции первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Зависимость скорости реакции от температуры
- •Методы определения энергии активации
- •Теории химической кинетики
- •Теория активных столкновений
- •Теория активированного комплекса
- •7. Катализ Основные понятия. Основные свойства катализатора
- •Гомогенный катализ
- •Гетерогенный катализ
- •8. Дисперсные системы Основные понятия и определения
- •Признаки объектов коллоидной химии
- •Специфические особенности высокодисперсных систем
- •Классификации дисперсных систем
- •1. Классификация по размерам частиц дисперсной фазы
- •2. Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.
- •9. Поверхностные явления Термодинамика поверхностных явлений
- •Поверхностное натяжение Физический смысл поверхностного натяжения
- •Термодинамическое определение поверхностного натяжения
- •Влияние температуры
- •Влияние природы граничащих фаз
- •Смачивание
- •Анализ уравнения Юнга
- •Флотация
- •Особенности искривленной поверхности раздела фаз
- •Капиллярное давление. Течение жидкости в капиллярах
- •Анализ уравнения Жюрена
- •Адсорбция Основные понятия и определения
- •Классификации адсорбции
- •1. Классификация по природе границы раздела
- •2.Классификация по типу взаимодействия адсорбата и адсорбента
- •Основные характеристики адсорбции
- •Основные экспериментальные зависимости адсорбции
- •Адсорбция на границе твердое тело – газ Теория мономолекулярной адсорбции Лэнгмюра Основные положения
- •Расчет констант уравнения Лэнгмюра
- •Адсорбция на границе жидкость – газ Особенность границы раздела жидкой и газообразной фаз
- •Фундаментальное уравнение адсорбции Гиббса
- •Свойства поверхностно-активных (пав) и поверхностно-инактивных (пив) веществ
- •Строение адсорбционного слоя на границе раствор - газ
- •Перечень используемой литературы
- •Содержание
Концентрационные цепи c переносом ионов
Концентрационными цепями с переносом ионов называются гальванические элементы с одинаковыми электродами и двумя растворами одного и того же электролита разной концентрации, между которыми имеется непосредственная граница соприкосновения в виде пористой диафрагмы, замедляющей перемешивание раствора. На границе соприкосновения растворов возникает дополнительный, так называемый, диффузионный потенциал д, влияющий на величину ЭДС гальванического элемента.
Причиной возникновения диффузионного потенциала является различная скорость движения ионов в растворах.
Диффузионный потенциал может возникать: а) на границе раздела двух растворов одного и того же электролита разной концентрации; б) на границе раздела разных электролитов одинаковой концентрации с различной подвижностью ионов.
|
а) если растворы одинаковы по природе, но различны по концентрации, то катионы и анионы будут перемещаться из области большей концентрации в область меньшей концентрации. Так как подвижность ионов Н+ много больше подвижности ионов Cl¯, то через некоторое время из концентрированного раствора в разбавленный перейдет больше ионов Н+ чем Cl¯. В результате этого |
граница раздела получает с одной стороны положительный заряд. Обусловленный избытком ионов Н+, а с другой стороны – отрицательный заряд, обусловленный избытком Cl¯. Образуется двойной электрический слой и соответствующий скачок потенциала, то есть диффузионный потенциал.
|
б) если растворы электролитов одинаковы по концентрации, но разные по своей природе, то диффузионный потенциал возникает за счет разной подвижности ионов, например, Н+ и Na+. Ионы Н+ обладают более высокой подвижностью по сравнению с ионами Na+ и будут быстрее переходить в раствор NaCl, чем ионы Na+ – в раствор HCl. В результате этого поверхность со |
стороны раствора HCl зарядится отрицательно, а со стороны NaCl – положительно. Образуется двойной электрический слой и соответствующий скачок потенциала (диффузионный потенциал).
Для расчета диффузионного потенциала, возникающего на границе двух различных растворов одинаковой концентрации, пользуются уравнением
, (5.39)
где 1 и 2 – подвижности одного и другого электролита.
Диффузионный потенциал всегда рассчитывается как величина положительная. На самом деле он может быть величиной как положительной, так и отрицательной.
. (5.40)
Выбор знака “+” или “–” перед диффузионным потенциалом зависит от взаимного направления электрических полей между электродами элемента и направления электрических полей на границе двух растворов. Если направления обоих электрических полей совпадают, то диффузионный потенциал (абсолютная величина) прибавляется к ЭДС, если направления электрических полей не совпадают, то вычитается.
Значение ЭДС концентрационного элемента с переносом ионов зависит от типов электродов, составляющих данный элемент.
1. Концентрационный элемент состоит из электродов, обратимых относительно катиона. Например, для гальванического элемента:
(–) Сu / CuSO4 ¦ CuSO4 / Cu (+)
ЭДС с учетом диффузионного потенциала рассчитывается по уравнению:
,
(
), (5.41)
где
ЕД
– ЭДС элемента с учётом диффузионного
потенциала;
–
число переноса аниона электролита; z
– число электронов, участвующих в
электрохимической реакции.
Диффузионный потенциал (φД) в этом случае вычисляется по формуле:
, (
), (5.42)
2. Концентрационный элемент состоит из электродов, обратимых относительно аниона:
(–) Ag, AgCl / KCl ¦ KCl / AgCl, Ag (+)
В этом случае ЭДС с учетом диффузионного потенциала определяется по соотношению:
, (
), (5.43)
где ЕД – ЭДС элемента с учётом диффузионного потенциала; t+ – число переноса катиона электролита; z – число электронов, участвующих в электрохимической реакции.
Диффузионный потенциал (φД) в этом случае вычисляется по формуле:
, (
). (5.44)
Величина диффузионного потенциала невелика, и в большинстве случаев не превышает сотых долей вольта, однако он снижает точность физико-химических измерений. Для устранения диффузионного потенциала используют солевой мостик (электролитический ключ), представляющий собой U-образную трубку, содержащую концентрированный раствор электролита, катионы и анионы которого имеют приблизительно одинаковую подвижность (KCl, KNO3, NH4Cl, NH4NO3).
Пример 5.16. Вычислите при 291 К ЭДС цепи
(–) Pt, H2 / КОН(aq) ¦ KCl(aq) ¦ HCl(aq) / Н2, Pt (+)
с учетом диффузионных потенциалов, возникающих на границах соприкасающихся растворов одинаковых концентраций, равных 0,001 М. Средние коэффициенты активности для НС1, КС1, КОН примите равными единице. Ионное произведение воды равно 1,2·10–14. Подвижности ионов водорода, хлорид-ионов, ионов калия, гидроксид-ионов при 291 К соответственно равны 315; 65,5; 64,9 и 174 См·см2.
Решение.
1. Этот элемент относится к концентрационным элементам с переносом ионов. В растворе КОН имеется некоторая концентрация (активность) Н+, обусловленная ионным произведением воды:
.
Активность ионов водорода в растворе гидроксида калия выразим из ионного произведения воды:
.
2.
Рассчитываем ЭДС элемента без учета
:
3. ЭДС этого элемента с учетом диффузионного потенциала можно рассчитать по выражению:
4. Электрические поля на границах растворов противоположны электрическому полю между электродами:
Поэтому
.
Вычислим
и
:
.
.
Общая ЭДС цепи равна:
Е = 0,459 – 0,015 – 0,027 = 0,417 В.
Вопросы для самоконтроля
1. В чем отличие между химическими и концентрационными гальваническими элементами?
2. Что вносит основной вклад в величину потенциала по уравнению Нернста?
3. Каким образом проводится выбор знака электрода при написании гальванического элемента?
4. Приведите способы устранения диффузионного потенциала.
