- •Е.В.Михеева, н.П.Пикула, м.И.Тартынова физическая химия
- •Введение
- •1. Химическая термодинамика Основные понятия химической термодинамики
- •Первое начало термодинамики
- •Формулировки первого начала термодинамики
- •Вычисление работы расширения идеальных газов в термодинамических процессах
- •Термохимия. Закон Гесса
- •Условия выполнения закона Гесса
- •Термодинамическое обоснование закона Гесса
- •Связь между Qp и qv
- •Следствия из закона Гесса. Методы расчета тепловых эффектов химических реакций
- •1. Расчет по стандартным теплотам образования
- •2. Расчет по стандартным теплотам сгорания
- •Метод термохимических уравнений
- •4. Метод термохимических схем
- •Теплоемкость
- •Теплоемкость идеального газа
- •Теплоемкость жидких и твердых тел
- •Эмпирические правила расчета теплоемкости
- •Влияние температуры на теплоемкость
- •Зависимость теплового эффекта химической реакции от температуры. Закон Кирхгофа
- •Исследование уравнения Кирхгофа
- •Расчет тепловых эффектов химических реакций по уравнению Кирхгофа
- •Второе начало термодинамики
- •Основные понятия и определения
- •Второе начало термодинамики. Энтропия
- •Формулировки второго начала термодинамики
- •Физический смысл энтропии
- •Статистическая природа второго начала термодинамики
- •Математическая запись второго начала термодинамики для обратимых процессов
- •Математическая запись второго начала термодинамики для необратимых процессов
- •Изменение энтропии как критерий направления процесса в изолированной системе
- •Расчет изменения энтропии в различных процессах
- •6. Расчет изменения энтропии для химической реакции по значениям стандартных абсолютных энтропий
- •Термодинамические потенциалы
- •Энергия Гиббса Физический смысл энергии Гиббса
- •Энергия Гиббса как критерий направления процесса
- •Расчет изменения энергии Гиббса в различных процессах
- •Энергия Гельмгольца Физический смысл энергии Гельмгольца
- •Энергия Гельмгольца как критерий направления процесса
- •Расчет изменения энергии Гельмгольца в различных процессах
- •1. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия n моль идеального газа
- •2. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия жидких и твердых тел
- •3. Расчет изменения энергии Гельмгольца в обратимо работающем электрохимическом элементе
- •Характеристические функции. Уравнения Гиббса – Гельмгольца
- •Химический потенциал
- •Условие равновесия в системе с переменным числом моль
- •Зависимость химического потенциала от давления
- •1. Область малых давлений (идеальный газ)
- •2. Область высоких давлений (реальные газы)
- •2. Химическое равновесие
- •Закон действующих масс
- •Уравнение изотермы химической реакции
- •Определение направления процесса по изотерме химической реакции
- •Уравнение химического сродства. Стандартная энергия Гиббса реакции
- •Различные способы выражения константы равновесия
- •Зависимость константы равновесия от температуры
- •Интегрирование уравнения изобары химической реакции
- •Влияние давления и температуры на химическое равновесие. Принцип Ле-Шателье
- •1. Влияние давления на смещение химического равновесия
- •2. Влияние температуры на равновесие химической реакции
- •Гетерогенное химическое равновесие
- •Расчет химического равновесия. Термическая диссоциация
- •3. Фазовое равновесие Основные понятия и определения
- •Основной закон фазового равновесия. Правило фаз Гиббса
- •Фазовое равновесие в однокомпонентной системе. Диаграммы состояния однокомпонентных систем
- •Уравнение Клапейрона - Клаузиуса
- •Применение уравнения Клапейрона – Клаузиуса к процессам испарения и возгонки
- •Расчет теплоты испарения и возгонки по уравнению Клапейрона – Клаузиуса
- •Однокомпонентные гетерогенные системы
- •Диаграмма состояния воды
- •Диаграмма состояния серы
- •Фазовое равновесие в двухкомпонентной системе. Диаграммы состояния двухкомпонентных систем Физико-химический анализ. Термический анализ
- •Фазовые диаграммы состояния двухкомпонентных систем
- •Диаграмма состояния системы с эвтектикой
- •Определение количественных соотношений между фазами. Правило рычага
- •Химические соединения
- •Фазовая диаграмма с конгруэнтно плавящимся химическим соединением
- •Фазовая диаграмма с инконгруэнтно плавящимся химическим соединением
- •Твердые растворы
- •Фазовая диаграмма с неограниченной растворимостью компонентов в твердом состоянии
- •Фазовые диаграммы с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграммы состояния с ограниченной растворимостью компонентов с эвтектикой (I типа)
- •Диаграммы состояния с ограниченной растворимостью компонентов с перитектикой (II типа)
- •Диаграммы состояния эвтектического типа с полиморфизмом компонентов
- •Сложные диаграммы состояния Диаграмма плавкости системы Al – Ni
- •Диаграмма состояния системы Fe-Fe3c
- •4. Растворы Общая характеристика растворов
- •Различные способы выражения концентрации растворов
- •Парциальные молярные величины и их значение в термодинамике растворов
- •Основные соотношения между парциальными молярными величинами
- •Аддитивные и неаддитивные свойства растворов
- •Типы растворов
- •Идеальные растворы
- •Предельно разбавленные растворы
- •Неидеальные растворы
- •Давление насыщенного пара компонента над раствором
- •Повышение температуры кипения растворов нелетучих веществ
- •Понижение температуры замерзания растворов нелетучих веществ
- •Осмотическое давление раствора
- •5. Электрохимия
- •Константа диссоциации слабого электролита
- •Ионное произведение воды. РН раствора
- •Сильные электролиты
- •Электрическая проводимость растворов электролитов
- •Кондуктометрия
- •Электролиз
- •Правила записи реакций на электродах при электролизе
- •Законы Фарадея
- •Числа переноса
- •Электродвижущие силы электрохимических элементов Основные понятия и определения
- •Правила записи электрохимических элементов
- •Электродные потенциалы
- •Типы электродов
- •Электроды первого рода
- •Электроды второго рода
- •Связь между электродами первого и второго рода
- •Окислительно-восстановительные электроды
- •Электрохимические элементы
- •Химические цепи
- •Химические цепи с двумя электролитами
- •Химические цепи с одним электролитом
- •Концентрационные цепи
- •Концентрационные цепи без переноса ионов
- •Концентрационные цепи c переносом ионов
- •6. Химическая кинетика
- •Основные понятия химической кинетики
- •Скорость химической реакции
- •Закон действующих масс
- •Формальная кинетика
- •Решение кинетических задач методами формальной кинетики
- •Односторонние реакции первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Зависимость скорости реакции от температуры
- •Методы определения энергии активации
- •Теории химической кинетики
- •Теория активных столкновений
- •Теория активированного комплекса
- •7. Катализ Основные понятия. Основные свойства катализатора
- •Гомогенный катализ
- •Гетерогенный катализ
- •8. Дисперсные системы Основные понятия и определения
- •Признаки объектов коллоидной химии
- •Специфические особенности высокодисперсных систем
- •Классификации дисперсных систем
- •1. Классификация по размерам частиц дисперсной фазы
- •2. Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.
- •9. Поверхностные явления Термодинамика поверхностных явлений
- •Поверхностное натяжение Физический смысл поверхностного натяжения
- •Термодинамическое определение поверхностного натяжения
- •Влияние температуры
- •Влияние природы граничащих фаз
- •Смачивание
- •Анализ уравнения Юнга
- •Флотация
- •Особенности искривленной поверхности раздела фаз
- •Капиллярное давление. Течение жидкости в капиллярах
- •Анализ уравнения Жюрена
- •Адсорбция Основные понятия и определения
- •Классификации адсорбции
- •1. Классификация по природе границы раздела
- •2.Классификация по типу взаимодействия адсорбата и адсорбента
- •Основные характеристики адсорбции
- •Основные экспериментальные зависимости адсорбции
- •Адсорбция на границе твердое тело – газ Теория мономолекулярной адсорбции Лэнгмюра Основные положения
- •Расчет констант уравнения Лэнгмюра
- •Адсорбция на границе жидкость – газ Особенность границы раздела жидкой и газообразной фаз
- •Фундаментальное уравнение адсорбции Гиббса
- •Свойства поверхностно-активных (пав) и поверхностно-инактивных (пив) веществ
- •Строение адсорбционного слоя на границе раствор - газ
- •Перечень используемой литературы
- •Содержание
Химические цепи
В химических цепях источником электрической энергии служат электрохимические реакции, протекающие на электродах. Основной вклад в величину ЭДС такой цепи вносят значения стандартных электродных потенциалов. Чем больше их разность, тем больше значение ЭДС.
Химические цепи делятся на две большие группы: химические цепи с двумя электролитами и химические цепи с одним электролитом.
Химические цепи с двумя электролитами
Примером химической цепи с двумя электролитами может служить элемент Даниэля – Якоби, состоящий из цинкового и медного электродов, погруженных в растворы сульфата цинка и сульфата меди соответственно:
На положительном (+) и отрицательном (–) электродах протекают реакции:
;
.
Cуммарная реакция, протекающая при работе элемента:
За счёт протекания этой реакции возникает ЭДС, которая зависит от стандартных электродных потенциалов и от активностей компонентов следующим образом:
,
где
.
Таким образом, ЭДС химического гальванического элемента, электроды которого обратимы относительно катионов, зависит в первую очередь от разности стандартных электродных потенциалов элементов, составляющих электрод, и от отношения активностей катионов электролитов.
Химические цепи с одним электролитом
Химические цепи с одним электролитом могут быть двух видов.
В химических цепях первого вида один электрод обратим относительно катиона, другой – относительно аниона. Примером такой цепи может служить элемент, состоящий из кадмиевого и каломельного электродов:
На положительном (+) и отрицательном (–) электродах протекают реакции:
;
.
Cуммарная реакция, протекающая при работе элемента:
.
За счёт протекания этой реакции возникает ЭДС, которая зависит от стандартных электродных потенциалов от активностей компонентов следующим образом:
,
где
;
.
Таким образом, ЭДС химического гальванического элемента с одним электролитом, электроды которого обратимы относительно разных ионов, зависит от активности ионов в растворе.
В химических цепях второго вида оба электрода обратимы относительно аниона. Примером такой цепи может служить элемент, состоящий из хлорсеребряного и хлорного электродов:
На положительном (+) и отрицательном (–) электродах протекают реакции:
;
.
Cуммарная реакция, протекающая при работе элемента:
.
Выражение
для ЭДС этого элемента, считая
,
будет равно:
,
где
.
Таким образом, ЭДС химического гальванического элемента с одним электролитом, электроды которого обратимы относительно одного и того же иона, не зависит от концентрации электролита. Такого типа гальванические элементы используются для точного определения стандартной ЭДС (Е0) элемента.
Пример 5.13. Вычислите при 298 К значение ЭДС следующего элемента:
Стандартные
электродные потенциалы
и
соответственно равны: –0,402 и –0,763 В.
Концентрации растворов составляют:
;
.
Средние коэффициенты активности равны:
;
.
Решение:
Имеем гальванический элемент, составленный из двух разных электродов первого рода. Так как стандартный электродный потенциал кадмиевого электрода более положительный, чем стандартный электродный потенциал цинкового электрода, то на электродах будут протекать реакции:
;
.
Cуммарная реакция, протекающая при работе элемента:
.
За счёт протекания этой реакции возникает ЭДС, которая зависит от активностей компонентов следующим образом:
где
;
.
Пример 5.14. Предложите гальванический элемент, в котором происходила бы реакция:
Найдите стандартную ЭДС предложенного элемента, если ЭДС элемента при 298 К равна 0,422 В, концентрация CuBr2 равна 0,01 М (f±=0,707).
Решение:
1. Из уравнения реакции следует, что ионы меди восстанавливаются до металлической меди (медный электрод первого рода), свинец окисляется с образованием малорастворимого соединения бромида свинца (бромид свинцовый электрод второго рода).
Из справочных данных о стандартных электродных потенциалах
следовательно,
при условной записи химической цепи с
одним электролитом медный электрод
будет справа:
2. Получим выражение для ЭДС данного элемента:
где
3. Найдем среднюю активность ионов бромида меди:
;
.
4. Вычислим значение стандартной ЭДС элемента:
.
