- •Е.В.Михеева, н.П.Пикула, м.И.Тартынова физическая химия
- •Введение
- •1. Химическая термодинамика Основные понятия химической термодинамики
- •Первое начало термодинамики
- •Формулировки первого начала термодинамики
- •Вычисление работы расширения идеальных газов в термодинамических процессах
- •Термохимия. Закон Гесса
- •Условия выполнения закона Гесса
- •Термодинамическое обоснование закона Гесса
- •Связь между Qp и qv
- •Следствия из закона Гесса. Методы расчета тепловых эффектов химических реакций
- •1. Расчет по стандартным теплотам образования
- •2. Расчет по стандартным теплотам сгорания
- •Метод термохимических уравнений
- •4. Метод термохимических схем
- •Теплоемкость
- •Теплоемкость идеального газа
- •Теплоемкость жидких и твердых тел
- •Эмпирические правила расчета теплоемкости
- •Влияние температуры на теплоемкость
- •Зависимость теплового эффекта химической реакции от температуры. Закон Кирхгофа
- •Исследование уравнения Кирхгофа
- •Расчет тепловых эффектов химических реакций по уравнению Кирхгофа
- •Второе начало термодинамики
- •Основные понятия и определения
- •Второе начало термодинамики. Энтропия
- •Формулировки второго начала термодинамики
- •Физический смысл энтропии
- •Статистическая природа второго начала термодинамики
- •Математическая запись второго начала термодинамики для обратимых процессов
- •Математическая запись второго начала термодинамики для необратимых процессов
- •Изменение энтропии как критерий направления процесса в изолированной системе
- •Расчет изменения энтропии в различных процессах
- •6. Расчет изменения энтропии для химической реакции по значениям стандартных абсолютных энтропий
- •Термодинамические потенциалы
- •Энергия Гиббса Физический смысл энергии Гиббса
- •Энергия Гиббса как критерий направления процесса
- •Расчет изменения энергии Гиббса в различных процессах
- •Энергия Гельмгольца Физический смысл энергии Гельмгольца
- •Энергия Гельмгольца как критерий направления процесса
- •Расчет изменения энергии Гельмгольца в различных процессах
- •1. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия n моль идеального газа
- •2. Расчет изменения энергии Гельмгольца в изотермическом процессе расширения или сжатия жидких и твердых тел
- •3. Расчет изменения энергии Гельмгольца в обратимо работающем электрохимическом элементе
- •Характеристические функции. Уравнения Гиббса – Гельмгольца
- •Химический потенциал
- •Условие равновесия в системе с переменным числом моль
- •Зависимость химического потенциала от давления
- •1. Область малых давлений (идеальный газ)
- •2. Область высоких давлений (реальные газы)
- •2. Химическое равновесие
- •Закон действующих масс
- •Уравнение изотермы химической реакции
- •Определение направления процесса по изотерме химической реакции
- •Уравнение химического сродства. Стандартная энергия Гиббса реакции
- •Различные способы выражения константы равновесия
- •Зависимость константы равновесия от температуры
- •Интегрирование уравнения изобары химической реакции
- •Влияние давления и температуры на химическое равновесие. Принцип Ле-Шателье
- •1. Влияние давления на смещение химического равновесия
- •2. Влияние температуры на равновесие химической реакции
- •Гетерогенное химическое равновесие
- •Расчет химического равновесия. Термическая диссоциация
- •3. Фазовое равновесие Основные понятия и определения
- •Основной закон фазового равновесия. Правило фаз Гиббса
- •Фазовое равновесие в однокомпонентной системе. Диаграммы состояния однокомпонентных систем
- •Уравнение Клапейрона - Клаузиуса
- •Применение уравнения Клапейрона – Клаузиуса к процессам испарения и возгонки
- •Расчет теплоты испарения и возгонки по уравнению Клапейрона – Клаузиуса
- •Однокомпонентные гетерогенные системы
- •Диаграмма состояния воды
- •Диаграмма состояния серы
- •Фазовое равновесие в двухкомпонентной системе. Диаграммы состояния двухкомпонентных систем Физико-химический анализ. Термический анализ
- •Фазовые диаграммы состояния двухкомпонентных систем
- •Диаграмма состояния системы с эвтектикой
- •Определение количественных соотношений между фазами. Правило рычага
- •Химические соединения
- •Фазовая диаграмма с конгруэнтно плавящимся химическим соединением
- •Фазовая диаграмма с инконгруэнтно плавящимся химическим соединением
- •Твердые растворы
- •Фазовая диаграмма с неограниченной растворимостью компонентов в твердом состоянии
- •Фазовые диаграммы с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграммы состояния с ограниченной растворимостью компонентов с эвтектикой (I типа)
- •Диаграммы состояния с ограниченной растворимостью компонентов с перитектикой (II типа)
- •Диаграммы состояния эвтектического типа с полиморфизмом компонентов
- •Сложные диаграммы состояния Диаграмма плавкости системы Al – Ni
- •Диаграмма состояния системы Fe-Fe3c
- •4. Растворы Общая характеристика растворов
- •Различные способы выражения концентрации растворов
- •Парциальные молярные величины и их значение в термодинамике растворов
- •Основные соотношения между парциальными молярными величинами
- •Аддитивные и неаддитивные свойства растворов
- •Типы растворов
- •Идеальные растворы
- •Предельно разбавленные растворы
- •Неидеальные растворы
- •Давление насыщенного пара компонента над раствором
- •Повышение температуры кипения растворов нелетучих веществ
- •Понижение температуры замерзания растворов нелетучих веществ
- •Осмотическое давление раствора
- •5. Электрохимия
- •Константа диссоциации слабого электролита
- •Ионное произведение воды. РН раствора
- •Сильные электролиты
- •Электрическая проводимость растворов электролитов
- •Кондуктометрия
- •Электролиз
- •Правила записи реакций на электродах при электролизе
- •Законы Фарадея
- •Числа переноса
- •Электродвижущие силы электрохимических элементов Основные понятия и определения
- •Правила записи электрохимических элементов
- •Электродные потенциалы
- •Типы электродов
- •Электроды первого рода
- •Электроды второго рода
- •Связь между электродами первого и второго рода
- •Окислительно-восстановительные электроды
- •Электрохимические элементы
- •Химические цепи
- •Химические цепи с двумя электролитами
- •Химические цепи с одним электролитом
- •Концентрационные цепи
- •Концентрационные цепи без переноса ионов
- •Концентрационные цепи c переносом ионов
- •6. Химическая кинетика
- •Основные понятия химической кинетики
- •Скорость химической реакции
- •Закон действующих масс
- •Формальная кинетика
- •Решение кинетических задач методами формальной кинетики
- •Односторонние реакции первого порядка
- •Односторонние реакции второго порядка
- •Односторонние реакции третьего порядка
- •Зависимость скорости реакции от температуры
- •Методы определения энергии активации
- •Теории химической кинетики
- •Теория активных столкновений
- •Теория активированного комплекса
- •7. Катализ Основные понятия. Основные свойства катализатора
- •Гомогенный катализ
- •Гетерогенный катализ
- •8. Дисперсные системы Основные понятия и определения
- •Признаки объектов коллоидной химии
- •Специфические особенности высокодисперсных систем
- •Классификации дисперсных систем
- •1. Классификация по размерам частиц дисперсной фазы
- •2. Классификация по агрегатному состоянию дисперсной фазы и дисперсионной среды.
- •9. Поверхностные явления Термодинамика поверхностных явлений
- •Поверхностное натяжение Физический смысл поверхностного натяжения
- •Термодинамическое определение поверхностного натяжения
- •Влияние температуры
- •Влияние природы граничащих фаз
- •Смачивание
- •Анализ уравнения Юнга
- •Флотация
- •Особенности искривленной поверхности раздела фаз
- •Капиллярное давление. Течение жидкости в капиллярах
- •Анализ уравнения Жюрена
- •Адсорбция Основные понятия и определения
- •Классификации адсорбции
- •1. Классификация по природе границы раздела
- •2.Классификация по типу взаимодействия адсорбата и адсорбента
- •Основные характеристики адсорбции
- •Основные экспериментальные зависимости адсорбции
- •Адсорбция на границе твердое тело – газ Теория мономолекулярной адсорбции Лэнгмюра Основные положения
- •Расчет констант уравнения Лэнгмюра
- •Адсорбция на границе жидкость – газ Особенность границы раздела жидкой и газообразной фаз
- •Фундаментальное уравнение адсорбции Гиббса
- •Свойства поверхностно-активных (пав) и поверхностно-инактивных (пив) веществ
- •Строение адсорбционного слоя на границе раствор - газ
- •Перечень используемой литературы
- •Содержание
Законы Фарадея
Между количеством прошедшего через раствор электричества и количеством вещества, прореагировавшего на электроде, существуют определенные соотношения, выраженные законами Фарадея.
Первый закон Фарадея: масса вещества (m), прореагировавшего на электроде, пропорциональна количеству электричества (Q), прошедшего через раствор:
, (5.29)
где kэ – электрохимический эквивалент (масса прореагировавшего вещества при протекании единицы количества электричества, гAc или гАч).
Второй закон Фарадея: при прохождении через различные электролиты одного и того же количества электричества массы прореагировавших на электроде веществ, пропорциональны их молярным массам эквивалентов (Мэкв):
m1: m2: m3 = Mэкв1 : Mэкв2 : Мэкв3. (5.30)
Из второго закона Фарадея следует, что для электрохимического превращения 1 моль-экв. любого вещества требуется одинаковое количество электричества F, которое называется постоянной Фарадея (F = 96485 кулон).
Уравнение, объединяющее оба закона Фарадея:
, (5.31)
где М – молярная масса вещества; – сила тока; t – время электролиза; z – число электронов, участвующих в электрохимической реакции.
Законы
Фарадея являются общими и точными
законами электрохимии. Однако при
электрохимических процессах часто
наблюдаются отклонения от этих законов:
масса mд
действительно
полученного или разложившегося продукта
не соответствует теоретической mТ,
вычисленной
по законам Фарадея.
Эти отклонения
– кажущиеся, они возникают за счёт
одновременного протекания побочных
электрохимических или химических
процессов. Эффективность основного
электрохимического процесса оценивается
выходом по
току:
В
=
100%
=
100%. (5.32)
Для измерения количества прошедшего электричества используются электролизеры, в которых нет параллельных электрохимических и побочных химических реакций. Они называются кулонометрами. По методам определения количества образующихся веществ кулонометры делятся на весовые, объемные, титрационные и др.
Например, действие серебряного кулонометра, представляющего собой электролизер с двумя серебряными электродами, погруженными в раствор нитрата серебра,
(–) Ag AgNO3 Ag (+)
основано на взвешивании массы серебра, осевшей на катоде во время электролиза по реакции:
При пропускании одного Фарадея электричества на катоде выделяется один моль-эквивалент cеребра, равный 108 г.
Пример 5.9. Металлический предмет, поверхностью 100 см2, требуется покрыть никелем слоем в 0,3 мм. Плотность никеля 9,0 г/см3. Сколько времени требуется пропускать ток силой 3 А, если 10% тока теряется в аппарате для электролиза?
Решение:
При
электролизе на катоде протекает реакция:
1. Определим массу никеля, необходимую для покрытия
г.
2. По закону Фарадея найдем необходимое количество электричества:
.
3. При силе тока в 3 А потребуется время электролиза:
.
4. Учтем 10% возможных потерь:
t
=
9
ч 8 мин.
Пример 5.10. При электролизе раствора NaCl на платиновых электродах получено 400 мл раствора, содержащего 18 г NaOH. За это же время в медном кулонометре, включенном параллельно с электролизером, выделилось 20,2 г меди. Вычислите выход по току.
Решение: Запишем все теоретически возможные электрохимические реакции на электродах и выберем наиболее вероятную:
1. При электролизе водного раствора хлорида натрия на электродах идут реакции:
Так как щелочные металлы на катоде не выделяются, идет выделение водорода из воды по реакции: .
Так как стандартные потенциалы выделения хлора и кислорода близки, следовательно, возможны обе реакции в зависимости от материала анода. На платиновом аноде преимущественно идет реакция выделения хлора: .
В результате выделения водорода и хлора в газовую фазу в растворе остаются ионы Na+ и OH¯ (NaOH).
2. Рассчитаем теоретическую массу гидроксида натрия, полученного в результате электролиза по второму закону Фарадея:
;
.
3. Рассчитаем выход по току:
В
=
100%
=
.
